分类: 嵌入式
2014-01-08 18:25:56
TSO,全称是TCP Segmentation Offload,我们知道通常以太网的MTU是1500,除去TCP/IP的包头,TCP的MSS (Max Segment Size)大小是1460,通常情况下协议栈会对超过1460的TCP payload进行segmentation,保证生成的IP包不超过MTU的大小,但是对于支持TSO/GSO的网卡而言,就没这个必要了,我们可以把 最多64K大小的TCP payload直接往下传给协议栈,此时IP层也不会进行segmentation,一直会传给网卡驱动,支持TSO/GSO的网卡会自己生成TCP /IP包头和帧头,这样可以offload很多协议栈上的内存操作,checksum计算等原本靠CPU来做的工作都移给了网卡
GSO是TSO的增强 ,GSO不只针对TCP,而是对任意协议,尽可能把segmentation推后到交给网卡那一刻,此时会判断下网卡是否支持SG和GSO,如果不支持则在协议栈里做segmentation;如果支持则把payload直接发给网卡
ethtool -k lo
Offload parameters for lo:
rx-checksumming: on
tx-checksumming: on
scatter-gather: on
tcp segmentation offload: on
udp fragmentation offload: off
generic segmentation offload: on
generic-receive-offload: on
目前很多网卡都支持tso,但很少有支持ufo的,而gso/gro和网卡无关,只是内核的特性。gso用来delay segmentation,一直到 dev_hard_start_xmit 函数
int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
struct netdev_queue *txq)
{
const struct net_device_ops *ops = dev->netdev_ops;
int rc;
unsigned int skb_len;
if (likely(!skb->next)) {
if (!list_empty(&ptype_all))
dev_queue_xmit_nit(skb, dev);
if (netif_needs_gso(dev, skb)) {
if (unlikely(dev_gso_segment(skb)))
goto out_kfree_skb;
if (skb->next)
goto gso;
}
......
gso:
do {
struct sk_buff *nskb = skb->next;
skb->next = nskb->next;
nskb->next = NULL;
skb_len = nskb->len;
rc = ops->ndo_start_xmit(nskb, dev);
trace_net_dev_xmit(nskb, rc, dev, skb_len);
if (unlikely(rc != NETDEV_TX_OK)) {
nskb->next = skb->next;
skb->next = nskb;
return rc;
}
txq_trans_update(txq);
if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
return NETDEV_TX_BUSY;
} while (skb->next);
skb->destructor = DEV_GSO_CB(skb)->destructor;
out_kfree_skb:
kfree_skb(skb);
return NETDEV_TX_OK;
}
dev_hard_start_xmit 里判断 netif_needs_gso 判断网卡是否支持gso,如果不支持则调用 dev_gso_segment 里面又调用 skb_gso_segment 把报文分片,对于ipv4而言,实际调用了 tcp_tso_segment,最后返回多个sk_buff 组成的链表,头指针存在 skb->next 里;如果网卡本身支持的话,直接把大块的skb交给网卡:调用netdev_ops->ndo_start_xmit 发送出去
可以看到,在判断netif_need_gso时,是要检查网卡的netdev->features值的,我们可以在include/linux/netdevice.h中看到这些值:
#define NETIF_F_SG 1 /* Scatter/gather IO. */
#define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
#define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
#define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
#define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
#define NETIF_F_GSO 2048 /* Enable software GSO. */
#define NETIF_F_GSO_SHIFT 16
#define NETIF_F_GSO_MASK 0x00ff0000
#define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
#define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
对于要支持TSO的网卡而言,需要有 NETIF_F_SG | NETIF_F_TSO | NETIF_F_IP_CSUM,相应如果要支持UFO,应该就需要 NETIF_F_SG | NETIF_F_UFO | NETIF_F_IP_CSUM
下面做个测试来考量下tso, gso对性能的影响,本人手头的测试机不支持ufo,所以只好拿tcp来测试了
scatter-gather: on
tcp segmentation offload: on
udp fragmentation offload: off
generic segmentation offload: on
generic-receive-offload: on
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
87380 65536 65536 10.00 26864.51
关闭了tso, gso之后
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
87380 65536 65536 10.00 18626.44
对于如果只是关闭gso而言,throughput不太稳定,但平均下来还是比gso打开有点降低的
顺便说下,tso, gso效果随着MTU增大越来越不明显,
#ifconfig lo mtu 65535
之后 netperf -t TCP_STREAM 测下来,tso开或者关已经差别不大了,10%左右吧
GSO的commit 在这里, 这个patch很老了。。新内核已经改了很多
主要增加了 dev_gso_segment,skb_gso_segment 函数,修改了dev_hard_start_xmit ,dev_queue_xmit 函数,这些之前已经提过了
------------------------------ 华丽的分割线 ------------------------------------
LRO(Large Receive Offload)是针对TCP的机制,GRO(Generic Receive Offload) 是LRO的增强版,对skb merge的限制更多,同时不限于tcp/ip,本文主要讲GRO,因为LRO对于ip forward以及bridge的场景会有问题,已经用得很少了
如果驱动打开了gro特性,会调用napi_gro_receive来收包,而不是通常的netif_receive_skb或者netif_rx,可以看到gro是和napi_struct紧密绑在一起的,我们这里回到之前研究过很多遍的napi_struct结构上来
struct napi_struct {
struct list_head poll_list;
unsigned long state;
int weight;
int (*poll)(struct napi_struct *, int);
#ifdef CONFIG_NETPOLL
spinlock_t poll_lock;
int poll_owner;
#endif
unsigned int gro_count;
struct net_device *dev;
struct list_head dev_list;
struct sk_buff *gro_list;
struct sk_buff *skb;
};
napi_struct 包含了 gro_list 一个skb的链表,链表中的每一个skb都代表了一个flow,gro_count代表了flow的个数
napi_gro_receive 会调用 __napi_gro_receive_gr,之后又会调用 __napi_gro_receive, __napi_gro_receive 会遍历 napi_struct->gro_list,通过比较skb->dev,和skb的mac_header来确定是否属于同一个flow,并 存在napi_gro_cb->flow中。这里要提下 struct napi_gro_cb 结构,对于通过gro处理的每一个skb,都在skb->cb保存一个私有数据结构的指针,就是这个napi_gro_cb。 注意这里skb的私有数据结构只是个void*,和skb_shared_info不要搞混了,后者是在sk_buff后面的一块线性内存
struct napi_gro_cb {
/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
void *frag0;
/* Length of frag0. */
unsigned int frag0_len;
/* This indicates where we are processing relative to skb->data. */
int data_offset;
/* This is non-zero if the packet may be of the same flow. */
int same_flow;
/* This is non-zero if the packet cannot be merged with the new skb. */
int flush;
/* Number of segments aggregated. */
int count;
/* Free the skb? */
int free;
};
然后 __napi_gro_receive 会调用 dev_gro_receive ,dev_gro_receive会先调用ptype->gso_receive,一般而言就是ip协议对应的inet_gso_receive
inet_gro_receive 主要做如下事情:
首先拿到ip包头,然后对包头做check,如果check passed则开始遍历napi_struct->gro_list,根据ip saddr, daddr, tos, protocol等来和那些之前在二层有可能是同一flow的skb进行判断,如果不一致就把same_flow置0,当然光是slow_flow并不能 就此开始merge,还要进行flush的判断,任何flush判断不过都会放弃merge而调用直接调用skb_gro_flush函数交到协议栈上层 去处理
ip层结束之后,会继续tcp层的gro_receive,调用tcp_gro_receive ,其核心也是遍历napi_struct->gro_list,基于source addr判断是否是same_flow,对是否需要flush做计算,这里提一下关于ack一致的要求,ack一致说明是同一个tcp payload被tso/gso分段之后的结果,所以是必需条件
如果 tcp 也认为不需要flush,那么会进到 skb_gro_receive 中,这个函数就是用来合并的,第一个参数是gro_list里的那个skb,第二个是新来的skb,这里不多说了,我推荐的博客文章里讲的很清楚了。其实 就分两种情况,如果是scatter-gather的skb包,则把新skb里的frags的数据放到gro_list的skb对应的frags数据后 面;否则skb数据都在skb的线性地址中,这样直接alloc一个新的skb,把新skb挂到frag_list里面,最后放到原来gro_list的 位置上;如果gro_list的skb已经有了frag_list,那么就直接挂进去好了
现在返回到dev_gro_receive中了,这时如果需要flush或者same_flow为0,说明需要传给上层协议栈了,此时调用napi_gro_complete
走到最后一种情况即这个skb是个新的flow,那么就加到gro_list的链表中
最后提下,所谓flush是指把现有gro_list中的skb flush到上层协议,千万别搞反了
更多关于gro详细的说明请参考
这篇博客对GRO解释的要清楚很多
实际测试下来,TSO在对性能的提升上非常明显,但是GRO并不是太明显,不知道在极限的性能测试下会是神马情况