n如果一个图的顶点可以分为两个集合X和Y,图的所有边一定是有一个顶点属于集合X,另一个顶点属于集合Y,则称该图为“二分图”( Bipartite Graph )
给定一个二分图G,M为G边集的一个子集,如果M满足当中的任意两条边都不依附于同一个顶点,则称M是一个匹配。(设M是E(G)的一个子集,如果M中任意两条边在G中均不邻接,则称M是G的一个匹配。M中的—条边的两个端点叫做在M是配对的。)
极大匹配(Maximal Matching)是指在当前已完成的匹配下,无法再通过增加未完成匹配的边的方式来增加匹配的边数。最大匹配(maximum matching)是所有极大匹配当中边数最大的一个匹配。选择这样的边数最大的子集称为图的最大匹配问题。
在二分图的应用中,最常见的就是最大匹配问题,很多其他的问题都可以通过转化为匹配问题来解决。
求二分图最大匹配可以用最大流(Maximal Flow)或者匈牙利算法(Hungarian Algorithm)
匈牙利算法(Hungarian Algorithm)
饱和与非饱和:
若匹配M的某条边与顶点v关联,则称M饱和顶点v,并且称v是M-饱和的,否则称v是M-不饱和的。
交互道:
若M是二分图G=(V,E)的一个匹配。设从图G中的一个顶点到另一个顶点存在一条道路,这条道路是由属于M的边和不属于M的边交替出现组成的,则称这条道路为交互道。
可增广道路:
若一交互道的两端点为关于M非饱和顶点时,则称这条交互道是可增广道路。显然,一条边的两端点非饱和,则这条边也是可增广道路。
最大匹配:
如果M是一匹配,而不存在其它匹配M',使得|M'|>|M|,则称M是最大匹配。其中|M|表示匹配M的边数。
对称差:
A,B是两个集合,定义 A⊕B = (A∪B)\(A∩B) , 则A⊕B称为A和B的对称差。
定理:M为G的最大匹配的充要条件是G中不存在可增广道路。
Hall定理:对于二部图G,存在一个匹配M,使得X的所有顶点关于M饱和的充要条件是:对于
X的任意一个子集A,和A邻接的点集为T(A),恒有: |T(A)| >= |A|
匈牙利算法是基于Hall定理中充分性证明的思想,其基本步骤为:
1。任给初始匹配M;
2。若X已饱和则结束,否则进行第3步;
3。在X中找到一个非饱和顶点x0,作
V1 ← {x0}, V2 ← Φ
4。若T(V1) = V2则因为无法匹配而停止,否则任选一点y ∈T(V1)\V2;
5。若y已饱和则转6,否则做一条从x0 →y的可增广道路P,M←M⊕E(P),转2;
6。由于y已饱和,所以M中有一条边(y,z),作 V1 ← V1 ∪{z}, V2 ← V2 ∪ {y}, 转4;
匈牙利算法:
说穿了,就是你从二分图中找出一条路径来,让路径的起点和终点都是还没有匹配过的点,并且路径经过的连线是一条没被匹配、一条已经匹配过,再下一条又没匹配这样交替地出现。找到这样的路径后,显然路径里没被匹配的连线比已经匹配了的连线多一条,于是修改匹配图,把路径里所有匹配过的连线去掉匹配关系,把没有匹配的连线变成匹配的,这样匹配数就比原来多1个。不断执行上述操作,直到找不到这样的路径为止。
阅读(1198) | 评论(0) | 转发(0) |