全部博文(471)
分类: C/C++
2012-05-22 09:21:22
动态规划(Dynamic Programming,简称DP)是通过组合子问题的解来解决问题的。
注意这里的programming不是指编程,而是指一种规划。
因为DP用的太广泛了,并且书上也花了很大的篇幅来讲这一章,所以我也准备把这一章分几篇来总结,并且我不按照书上的顺序来总结,也不会全部用书上的例子。
这一章首先给出一些基础的概念,然后给出一个最基础入门的DP问题,三角形求值问题。
DP适用于子问题不是独立的情况,这样如果用分治法,也会作许多重复的工作,而DP只对子问题求解一次,将其结果保存在一张表中,从而避免了每次遇到各个子问题时重新计算的情况。
比较分治法于动态规划的区别:
分治法:将问题划分为一些独立的子问题,递归的求解各子问题,然后合并子问题的解而得到原问题的解。
eg.
MERGE-SORT(A, p, r) 1 if p < r 2 then q ← |(p + r)/2| 3 MERGE-SORT(A, p, q) 4 MERGE-SORT(A, q + 1, r) 5 MERGE(A, p, q, r)动态规划:适用于子问题不是独立的情况,也就是各子问题包含公共的子子问题,鉴于会重复的求解各子问题,DP对每个问题只求解一遍,将其保存在一张表中,从而避免重复计算。DP算法的设计可以分为四个步骤:
①.描述最优解的结构。
②.递归定义最优解的值。
③.按自底而上的方式计算最优解的值。
④.由计算出的结果创造一个最优解。
下面来看看三角形求值这个问题:
将一个由N行数字组成的三角形,如图所以,设计一个算法,计算出三角形的由顶至底的一条路径,使该路径经过的数字总和最大。
这是在我见过的DP题目中,算是最简单的了,我相信就算没有学过DP的也会。
将上图转化一下:
假设上图用map[][]数组保存。
令f[i][j]表示从顶点(1, 1)到顶点(i, j)的最大值。
则可以得到状态转移方程:
f[i][j] = max(f[i+1][j], f[i+1][j+1]) + map[i][j]
此题既适合自顶而下的方法做,也适合自底而上的方法,
当用自顶而下的方法做时,最后要在在最后一列数中找出最大值,
以下代码采用自底而上的方法做:
而用自底而上的方法做时,f[1][1]即为最大值。
所以我们将图2根据状态转移方程可以得到图3:
最大值是30.
点击(此处)折叠或打开