WordCount程序 在 hadoop1.2.1 测试成功。
-
package hadoopdemo.wordcount;
-
-
import java.io.IOException;
-
import java.util.StringTokenizer;
-
-
import org.apache.hadoop.conf.Configuration;
-
import org.apache.hadoop.fs.Path;
-
import org.apache.hadoop.io.IntWritable;
-
import org.apache.hadoop.io.LongWritable;
-
import org.apache.hadoop.io.Text;
-
import org.apache.hadoop.mapreduce.Job;
-
import org.apache.hadoop.mapreduce.Mapper;
-
import org.apache.hadoop.mapreduce.Reducer;
-
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
-
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
-
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
-
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
-
-
public class WordCount {
-
-
public static class Map extends
-
Mapper<LongWritable, Text, Text, IntWritable> {
-
-
private final IntWritable one = new IntWritable(1);
-
private Text word = new Text();
-
-
public void map(LongWritable key, Text value, Context context)
-
throws IOException, InterruptedException {
-
String line = value.toString();
-
StringTokenizer token = new StringTokenizer(line);
-
while (token.hasMoreTokens()) {
-
word.set(token.nextToken());
-
context.write(word, one);
-
}
-
}
-
}
-
-
public static class Reduce extends
-
Reducer<Text, IntWritable, Text, IntWritable> {
-
-
public void reduce(Text key, Iterable<IntWritable> values,
-
Context context) throws IOException, InterruptedException {
-
int sum = 0;
-
for (IntWritable val : values) {
-
sum += val.get();
-
}
-
context.write(key, new IntWritable(sum));
-
}
-
}
-
-
public static void main(String[] args) throws Exception {
-
Configuration conf = new Configuration();
-
Job job = new Job(conf);
-
job.setJarByClass(WordCount.class);
-
job.setJobName("wordcount");
-
-
job.setOutputKeyClass(Text.class);
-
job.setOutputValueClass(IntWritable.class);
-
-
job.setMapperClass(Map.class);
-
job.setReducerClass(Reduce.class);
-
-
job.setInputFormatClass(TextInputFormat.class);
-
job.setOutputFormatClass(TextOutputFormat.class);
-
-
FileInputFormat.addInputPath(job, new Path(args[0]));
-
FileOutputFormat.setOutputPath(job, new Path(args[1]));
-
-
job.waitForCompletion(true);
-
}
-
}
-
将以上内容打个jar包运行命令
hadoop jar /usr/local/wordcount.jar
WordCount /input /output
1、WordCountMap类继承了org.apache.hadoop.mapreduce.Mapper,4个泛型类型分别是map函数输入key的类型,输入value的类型,输出key的类型,输出value的类型。
2、WordCountReduce类继承了org.apache.hadoop.mapreduce.Reducer,4个泛型类型含义与map类相同。
3、map的输出类型与reduce的输入类型相同,而一般情况下,map的输出类型与reduce的输出类型相同,因此,reduce的输入类型与输出类型相同。
4、hadoop根据以下代码确定输入内容的格式:
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat是hadoop默认的输入方法,它继承自FileInputFormat。在TextInputFormat中,它将数据集切割成小数据集InputSplit,每一个InputSplit由一个mapper处理。此外,InputFormat还提供了一个RecordReader的实现,将一个InputSplit解析成<key,value>的形式,并提供给map函数:
key:这个数据相对于数据分片中的字节偏移量,数据类型是LongWritable。
value:每行数据的内容,类型是Text。
因此,在本例中,map函数的key/value类型是LongWritable与Text。
5、Hadoop根据以下代码确定输出内容的格式:
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat是hadoop默认的输出格式,它会将每条记录一行的形式存入文本文件,如
the 30
happy 23
阅读(2173) | 评论(0) | 转发(0) |