Chinaunix首页 | 论坛 | 博客
  • 博客访问: 875879
  • 博文数量: 149
  • 博客积分: 3671
  • 博客等级: 中校
  • 技术积分: 1701
  • 用 户 组: 普通用户
  • 注册时间: 2010-06-03 16:52
文章分类

全部博文(149)

文章存档

2011年(57)

2010年(92)

分类: C/C++

2010-09-03 09:57:16

原来一直没有明白字节序的问题,通过这篇文章才弄懂怎么回事。

一、字节序定义

字节序,顾名思义字节的顺序,再多说两句就是大于一个字节类型的数据在内存中的存放顺序(一个字节的数据当然就无需谈顺序的问题了)。

其实大部分人在实际的开发中都很少会直接和字节序打交道。唯有在跨平台以及网络程序中字节序才是一个应该被考虑的问题。

在所有的介绍字节序的文章中都会提到字节序分为两类:Big-Endian和Little-Endian。引用标准的Big-Endian和Little-Endian的定义如下:
a) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。
b) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。
c) 网络字节序:4个字节的32 bit值以下面的次序传输:首先是0~7bit,其次8~15bit,然后16~23bit,最后是24~31bit。这种传输次序称作大端字节序。由于 TCP/IP首部中所有的二进制整数在网络中传输时都要求以这种次序,因此它又称作网络字节序。比如,以太网头部中2字节的“以太网帧类型”,表示后面数据的类型。对于ARP请求或应答的以太网帧类型来说,在网络传输时,发送的顺序是0x08,0x06。在内存中的映象如下图所示:
栈底 (高地址)
---------------
0x06 -- 低位 
0x08 -- 高位
---------------
栈顶 (低地址)
该字段的值为0x0806。按照大端方式存放在内存中。

二、高/低地址与高低字节

首先我们要知道我们C程序映像中内存的空间布局情况:在《C专家编程》中或者《Unix环境高级编程》中有关于内存空间布局情况的说明,大致如下图:
----------------------- 最高内存地址 0xffffffff
 | 栈底
 .
 .              栈
 .
  栈顶
-----------------------
 |
 |
\|/

NULL (空洞)

/|\
 |
 |
-----------------------
                堆
-----------------------
未初始化的数据
----------------(统称数据段)
初始化的数据
-----------------------
正文段(代码段)
----------------------- 最低内存地址 0x00000000

以上图为例如果我们在栈上分配一个unsigned char buf[4],那么这个数组变量在栈上是如何布局的呢[注1]?看下图:
栈底 (高地址)
----------
buf[3]
buf[2]
buf[1]
buf[0]
----------
栈顶 (低地址)

现在我们弄清了高低地址,接着来弄清高/低字节,如果我们有一个32位无符号整型0x12345678(呵呵,恰好是把上面的那4个字节buf看成一个整型),那么高位是什么,低位又是什么呢?其实很简单。在十进制中我们都说靠左边的是高位,靠右边的是低位,在其他进制也是如此。就拿 0x12345678来说,从高位到低位的字节依次是0x12、0x34、0x56和0x78。

高低地址和高低字节都弄清了。我们再来回顾一下Big-Endian和Little-Endian的定义,并用图示说明两种字节序:
以unsigned int value = 0x12345678为例,分别看看在两种字节序下其存储情况,我们可以用unsigned char buf[4]来表示value:
Big-Endian: 低地址存放高位,如下图:
栈底 (高地址)
---------------
buf[3] (0x78) -- 低位
buf[2] (0x56)
buf[1] (0x34)
buf[0] (0x12) -- 高位
---------------
栈顶 (低地址)

Little-Endian: 低地址存放低位,如下图:
栈底 (高地址)
---------------
buf[3] (0x12) -- 高位
buf[2] (0x34)
buf[1] (0x56)
buf[0] (0x78) -- 低位
---------------
栈顶 (低地址)

在现有的平台上Intel的X86采用的是Little-Endian,而像Sun的SPARC采用的就是Big-Endian。

三、例子

嵌入式系统开发者应该对Little-endian和Big-endian模式非常了解。采用Little-endian模式的CPU对操作数的存放方式是从低字节到高字节,而Big-endian模式对操作数的存放方式是从高字节到低字节。

例如,16bit宽的数0x1234在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:

内存地址  存放内容
 0x4001    0x12
 0x4000    0x34

而在Big-endian模式CPU内存中的存放方式则为:

内存地址  存放内容
 0x4001    0x34
 0x4000    0x12
 
32bit宽的数0x12345678在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:

内存地址  存放内容
 0x4003     0x12
 0x4002     0x34
 0x4001     0x56
 0x4000     0x78
 
而在Big-endian模式CPU内存中的存放方式则为:

内存地址  存放内容
 0x4003     0x78
 0x4002     0x56
 0x4001     0x34
 0x4000     0x12

if ($ != jQuery) { $ = jQuery.noConflict(); } var isLogined = false; var cb_blogId = 11119; var cb_entryId = 1052915; var cb_blogApp = "wqlblogger"; var cb_blogUserGuid = "c99a310b-63cf-dd11-9e4d-001cf0cd104b"; var cb_entryCreatedDate = '2008/1/25 12:43:00';
 
两种简单的判断大小段的方法:
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++=
用联合体来判断:
#include

union {
        unsigned short a;
        char b;
}fan;

void main(void)
{
        fan.a=0x2211;
        printf("fan.b=%x\n",fan.b);
}
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
fan@fan:~/arm$ gcc -o app little.c 
fan@fan:~/arm$ ./app
fan.b=11//低位对应低地址,所以为小端
fan@fan:~/arm$ 
======================================================================
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
使用指针强转换
#include

void main(void)
{
        unsigned short a;
        a=0x2211;
        printf("(char)a[0]=%x\n",((char*)&a)[0]);//注意他们的优先级
        printf("(char)a[1]=%x\n",((char*)&a)[1]);
}
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
运行结果:
fan@fan:~/arm$ ./app
(char)a[0]=11//和上面的结果一样,也是小端模式
(char)a[1]=22
fan@fan:~/arm$ 


阅读(998) | 评论(1) | 转发(0) |
给主人留下些什么吧!~~

chinaunix网友2010-09-05 14:53:32

Download More than 1000 free IT eBooks: http://free-ebooks.appspot.com