分类: LINUX
2010-01-21 13:33:55
今天进入《Linux设备驱动程序(第3版)》第三章字符设备驱动程序的学习。
这一章主要通过介绍字符设备scull(Simple Character Utility for Loading Localities,区域装载的简单字符工具)的驱动程序编写,来学习Linux设备驱动的基本知识。scull可以为真正的设备驱动程序提供样板。
--------------------------------------------------------------------------------
一、主设备号和此设备号
主设备号表示设备对应的驱动程序;次设备号由内核使用,用于正确确定设备文件所指的设备。
内核用dev_t类型(
在实际使用中,是通过
(dev_t)-->主设备号、次设备号 MAJOR(dev_t dev)
MINOR(dev_t dev)
主设备号、次设备号-->(dev_t) MKDEV(int major,int minor)
建立一个字符设备之前,驱动程序首先要做的事情就是获得设备编号。其这主要函数在
int register_chrdev_region(dev_t first, unsigned int count, char *name);
//指定设备编号。first:是要分配的设备编号范围的起始值。first的此设备号经常置为0。count是所请求的连续设备编号的个数。name是和该编号范围关联的设备名称,它将出现在/proc/devices和sysfs中。
int alloc_chrdev_region(dev_t *dev, unsigned int firstminor, unsigned int count, char *name);
//动态生成设备编号。dev是仅用于输出的参数,在成功完成调用后将保存已分配范围的第一个编号。firstminor应该是要使用的被请求的第一个此设备号,它通常为0。count和name参数与register_chrdev_region函数的一样。
void unregister_chrdev_region(dev_t first, unsigned int count); //释放设备编号
分配之设备号的最佳方式是:默认采用动态分配,同时保留在加载甚至是编译时指定主设备号的余地。
以下是在scull.c中用来获取主设备好的代码:
if (scull_major) {
dev = MKDEV(scull_major, scull_minor);
result = register_chrdev_region(dev, scull_nr_devs, "scull");
} else {
result = alloc_chrdev_region(&dev, scull_minor, scull_nr_devs,"scull");
scull_major = MAJOR(dev);
}
if (result < 0) {
printk(KERN_WARNING "scull: can't get major %d\n", scull_major);
return result;
}
在这部分中,比较重要的是在用函数获取设备编号后,其中的参数name是和该编号范围关联的设备名称,它将出现在/proc/devices和sysfs中。
看到这里,就可以理解为什么mdev和udev可以动态、自动地生成当前系统需要的设备文件。udev就是通过读取sysfs下的信息来识别硬件设备的.
(请看《理解和认识udev》
URL:http://blog.chinaunix.net/u/6541/showart_396425.html)
--------------------------------------------------------------------------------
二、一些重要的数据结构
大部分基本的驱动程序操作涉及及到三个重要的内核数据结构,分别是file_operations、file和inode,它们的定义都在
--------------------------------------------------------------------------------
三、字符设备的注册
内核内部使用struct cdev结构来表示字符设备。在内核调用设备的操作之前,必须分配并注册一个或多个struct cdev。代码应包含
注册一个独立的cdev设备的基本过程如下:
1、为struct cdev 分配空间(如果已经将struct cdev 嵌入到自己的设备的特定结构体中,并分配了空间,这步略过!)
struct cdev *my_cdev = cdev_alloc();
2、初始化struct cdev
void cdev_init(struct cdev *cdev, const struct file_operations *fops)
3、初始化cdev.owner
cdev.owner = THIS_MODULE;
4、cdev设置完成,通知内核struct cdev的信息(在执行这步之前必须确定你对struct cdev的以上设置已经完成!)
int cdev_add(struct cdev *p, dev_t dev, unsigned count)
从系统中移除一个字符设备:void cdev_del(struct cdev *p)
以下是scull中的初始化代码(之前已经为struct scull_dev 分配了空间):
/*
* Set up the char_dev structure for this device.
*/
static void scull_setup_cdev(struct scull_dev *dev, int index)
{
int err, devno = MKDEV(scull_major, scull_minor + index);
cdev_init(&dev->cdev, &scull_fops);
dev->cdev.owner = THIS_MODULE;
dev->cdev.ops = &scull_fops; //这句可以省略,在cdev_init中已经做过
err = cdev_add (&dev->cdev, devno, 1);
/* Fail gracefully if need be 这步值得注意*/
if (err)
printk(KERN_NOTICE "Error %d adding scull%d", err, index);
}
早期的办法:
注册一个字符设备驱动程序的经典方式是:
int register_chrdev(unsigned int major, const char *name, struct file_operations *fpos);
这里major是设备的主设备号,name是驱动程序的名称(出现在/proc/devices中),而fpos是默认的file_operations结构。对其调用将为给定的主设备号注册0~255作为此设备号,并为每个设备建立一个对应的默认cdev结构。
其对应的删除设备函数为:
int unregister_chrdev(unsigned int major, const char *name);
major和name必须与传递给register_chrdev函数的值保持一致,否则该调用会失败。
--------------------------------------------------------------------------------
四、scull模型的内存使用
以下是scull模型的结构体:
/*
* Representation of scull quantum sets.
*/
struct scull_qset {
void **da
struct scull_qset *next;
};
struct scull_dev {
struct scull_qset *da
int quantum; /* the current quantum size */
int qset; /* the current array size */
unsigned long size; /* amount of da
unsigned int access_key; /* used by sculluid and scullpriv */
struct semaphore sem; /* mutual exclusion semaphore */
struct cdev cdev; /* Char device structure */
};
scull驱动程序引入了两个Linux内核中用于内存管理的核心函数,它们的定义都在
void kfree(void *ptr);
以下是scull模块中的一个释放整个数据区的函数(类似清零),将在scull以写方式打开和scull_cleanup_module中被调用:
int scull_trim(struct scull_dev *dev)
{
struct scull_qset *next, *dptr;
int qset = dev->qset; /* 量子集中量子的个数*/
int i;
for (dptr = dev->da
if (dptr->da
for (i = 0; i < qset; i++)/* 循环一个量子集中量子的个数次*/
kfree(dptr->da
kfree(dptr->da
dptr->da
}
next = dptr->next; /* 准备下个scull_set的指针*/
kfree(dptr) ; /* 释放当前的scull_set*/
}
dev->size = 0; /* 当前的scull_device所存的数据为0字节*/
dev->quantum = scull_quantum;/* 初始化一个量子的大小*/
dev->qset = scull_qset;/* 初始化一个量子集中量子的个数*/
dev->da
return 0;
}
以下是scull模块中的一个沿链表前行得到正确scull_set指针的函数,将在read和write方法中被调用:
/*Follow the list*/
struct scull_qset *scull_follow(struct scull_dev *dev, int n)
{
struct scull_qset *qs = dev->da
/* Allocate first qset explicitly if need be */
if (! qs) {
qs = dev->da
if (qs == NULL)
return NULL; /* Never mind */
memset(qs, 0, sizeof(struct scull_qset));
}
/* Then follow the list */
while (n--) {
if (!qs->next) {
qs->next = kmalloc(sizeof(struct scull_qset), GFP_KERNEL);
if (qs->next == NULL)
return NULL; /* Never mind */
memset(qs->next, 0, sizeof(struct scull_qset));
}
qs = qs->next;
continue;
}
return qs;
}
其实这个函数的实质是:如果已经存在这个scull_set,就返回这个scull_set的指针。如果不存在这个scull_set,一边沿链表为scull_set分配空间一边沿链表前行,直到所需要的scull_set被分配到空间并初始化为止,就返回这个scull_set的指针。
--------------------------------------------------------------------------------
五、open和release
open函数原型如下:
int (*open) (struct inode *inode, struct file *filp);
open方法提供给驱动程序以初始化的能力,为以后的操作作准备。应完成的工作如下:
(1)检查设备特定的错误(如设备未就绪或硬件问题);
(2)如果设备是首次打开,则对其进行初始化;
(3)如有必要,更新f_op指针;
(4)分配并填写置于filp->private_da
而根据scull的实际情况,他的open函数只要完成第四步(将初始化过的struct scull_dev dev的指针传递到filp->private_da
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})
其实从源码可以看出,其作用就是:通过指针ptr,获得包含ptr所指向数据(是member结构体)的type结构体的指针。即是用指针得到另外一个指针。
release方法提供释放内存,关闭设备的功能。应完成的工作如下:
(1)释放由open分配的、保存在file->private_da
(2)在最后一次关闭操作时关闭设备。
由于前面定义了scull是一个全局且持久的内存区,所以他的release什么都不做。
int scull_release(struct inode *inode, struct file *filp);
--------------------------------------------------------------------------------
六、read和write
ssize_t read(struct file *filp, char __user *buff, size_t count, loff_t *offp);
ssize_t write(struct file *filp, const char __user *buff, size_t count, loff_t *offp);
read和write方法的主要作用就是实现内核与用户空间之间的数据拷贝。因为Linux的内核空间和用户空间隔离的,所以要实现数据拷贝就必须使用在
unsigned long copy_to_user(void __user *to,
const void *from,
unsigned long count);
unsigned long copy_from_user(void *to,
const void __user *from,
unsigned long count);
而值得一提的是以上两个函数和
#define __copy_from_user(to,from,n) (memcpy(to, (void __force *)from, n), 0)
#define __copy_to_user(to,from,n) (memcpy((void __force *)to, from, n), 0)
之间的关系:通过源码可知,前者调用后者,但前者在调用前对用户空间指针进行了检查。
至于read和write 的具体函数比较简单,就在实验中验证好了。
--------------------------------------------------------------------------------
七、模块实验
这次模块实验的使用是友善之臂SBC2440V4,使用Linux2.6.22.2内核。
模块程序链接:scull模块源程序
模块测试程序链接:模块测试程序
测试结果:
量子大小为6:
[Tekkaman2440@SBC2440V4]#cd /lib/modules/ [Tekkaman2440@SBC2440V4]#insmod scull.ko scull_quantum=6
[Tekkaman2440@SBC2440V4]#cat /proc/devices
Character devices:
1 mem
2 pty
3 ttyp
4 /dev/vc/0
4 tty
4 ttyS
5 /dev/tty
5 /dev/console
5 /dev/ptmx
7 vcs
10 misc
13 input
14 sound
81 video4linux
89 i2c
90 mtd
116 alsa
128 ptm
136 pts
180 usb
189 usb_device
204 s3c2410_serial
252 scull
253 usb_endpoint
254 rtc
Block devices:
1 ramdisk
256 rfd
7 loop
31 mtdblock
93 nftl
96 inftl
179 mmc
[Tekkaman2440@SBC2440V4]#mknod -m 666 scull0 c 252 0
[Tekkaman2440@SBC2440V4]#mknod -m 666 scull1 c 252 1
[Tekkaman2440@SBC2440V4]#mknod -m 666 scull2 c 252 2
[Tekkaman2440@SBC2440V4]#mknod -m 666 scull3 c 252 3
--------------------------------------------------------------------------------
启动测试程序
[Tekkaman2440@SBC2440V4]#./scull_test
write error! co
write error! co
write error! co
write ok! co
read error! co
read error! co
read error! co
read ok! co
[0]=0 [1]=1 [2]=2 [3]=3 [4]=4
[5]=5 [6]=6 [7]=7 [8]=8 [9]=9
[10]=10 [11]=11 [12]=12 [13]=13 [14]=14
[15]=15 [16]=16 [17]=17 [18]=18 [19]=19
--------------------------------------------------------------------------------
改变量子大小为默认值4000:
[Tekkaman2440@SBC2440V4]#cd /lib/modules/
[Tekkaman2440@SBC2440V4]#rmmod scull
[Tekkaman2440@SBC2440V4]#insmod scull.ko
--------------------------------------------------------------------------------
启动测试程序
[Tekkaman2440@SBC2440V4]#./scull_test
write ok! co
read ok! co
[0]=0 [1]=1 [2]=2 [3]=3 [4]=4
[5]=5 [6]=6 [7]=7 [8]=8 [9]=9
[10]=10 [11]=11 [12]=12 [13]=13 [14]=14
[15]=15 [16]=16 [17]=17 [18]=18 [19]=19
[Tekkaman2440@SBC2440V4]#
--------------------------------------------------------------------------------
改变量子大小为6,量子集大小为2:
[Tekkaman2440@SBC2440V4]#cd /lib/modules/
[Tekkaman2440@SBC2440V4]#rmmod scull
[Tekkaman2440@SBC2440V4]#insmod scull.ko scull_quantum=6 scull_qset=2
--------------------------------------------------------------------------------
启动测试程序
[Tekkaman2440@SBC2440V4]#./scull_test
write error! co
write error! co
write error! co
write ok! co
read error! co
read error! co
read error! co
read ok! co
[0]=0 [1]=1 [2]=2 [3]=3 [4]=4
[5]=5 [6]=6 [7]=7 [8]=8 [9]=9
[10]=10 [11]=11 [12]=12 [13]=13 [14]=14
[15]=15 [16]=16 [17]=17 [18]=18 [19]=19
实验不仅测试了模块的读写能力,还测试了量子读写是否有效。