Chinaunix首页 | 论坛 | 博客
  • 博客访问: 194202
  • 博文数量: 26
  • 博客积分: 1121
  • 博客等级: 少尉
  • 技术积分: 499
  • 用 户 组: 普通用户
  • 注册时间: 2009-10-12 14:24
文章分类
文章存档

2011年(3)

2010年(10)

2009年(13)

我的朋友

分类: C/C++

2009-10-12 14:44:23

   Win32平台下的微软C编译器在默认情况下采用如下的对齐规则任何基本数据类型T的对齐模数就是T的大小,即sizeof(T)。比如对于double类型(8字节),就要求该类型数据的地址总是8的倍数,而char类型数据(1字节)则可以从任何一个地址开始。Linux下的GCC奉行的是另外一套规则(在资料中查得,并未验证,如错误请指正):任何2字节大小(包括单字节吗?)的数据类型(比如short)的对齐模数是2,而其它所有超过2字节的数据类型(比如long,double)都以4为对齐模数。
   现在回到我们关心的struct上来。ANSI C规定一种结构类型的大小是它所有字段的大小以及字段之间或字段尾部的填充区大小之和。嗯?填充区?对,这就是为了使结构体字段满足内存对齐要求而额外分配给结构体的空间。那么结构体本身有什么对齐要求吗?有的,ANSI C标准规定结构体类型的对齐要求不能比它所有字段中要求最严格的那个宽松,可以更严格(但此非强制要求,VC7.1就仅仅是让它们一样严格)。我们来看一个例子(以下所有试验的环境是Intel Celeron 2.4G + WIN2000 PRO + vc7.1,内存对齐编译选项是"默认",即不指定/Zp与/pack选项):
  typedef struct ms1
  {
     char a;
     int b;
  } MS1;

    假设MS1按如下方式内存布局(本文所有示意图中的内存地址从左至右递增):
       _____________________________
       |       |                   |
       |   a  |        b         |
       |       |                   |
       +---------------------------+
 Bytes:    1             4

    因为MS1中有最强对齐要求的是b字段(int),所以根据编译器的对齐规则以及ANSI C标准,MS1对象的首地址一定是4(int类型的对齐模数)的倍数。那么上述内存布局中的b字段能满足int类型的对齐要求吗?嗯,当然不能。如果你是编译器,你会如何巧妙安排来满足CPU的癖好呢?呵呵,经过1毫秒的艰苦思考,你一定得出了如下的方案:

       _______________________________________
       |       |\\\\\\\\\\\|                 |
       |   a  |\\padding\\|       b    |
       |       |\\\\\\\\\\\|                 |
       +-------------------------------------+
 Bytes:    1         3             4

    这个方案在a与b之间多分配了3个填充(padding)字节,这样当整个struct对象首地址满足4字节的对齐要求时,b字段也一定能满足int型的4字节对齐规定。那么sizeof(MS1)显然就应该是8,而b字段相对于结构体首地址的偏移就是4。非常好理解,对吗?现在我们把MS1中的字段交换一下顺序:

  typedef struct ms2
  {
     int a;
     char b;
  } MS2;

    或许你认为MS2比MS1的情况要简单,它的布局应该就是

       _______________________
       |             |       |
       |     a      |   b  |
       |             |       |
       +---------------------+
 Bytes:      4           1 

    因为MS2对象同样要满足4字节对齐规定,而此时a的地址与结构体的首地址相等,所以它一定也是4字节对齐。嗯,分析得有道理,可是却不全面。让我们来考虑一下定义一个MS2类型的数组会出现什么问题。C标准保证,任何类型(包括自定义结构类型)的数组所占空间的大小一定等于一个单独的该类型数据的大小乘以数组元素的个数。换句话说,数组各元素之间不会有空隙。按照上面的方案,一个MS2数组array的布局就是:

|<-    array[1]     ->|<-    array[2]     ->|<- array[3] .....

__________________________________________________________
|             |       |              |      |
|     a      |   b  |      a      |   b |.............
|             |       |              |      |
+----------------------------------------------------------
Bytes:  4         1          4           1

 

       ___________________________________
       |             |       |\\\\\\\\\\\|
       |     a      |   b  |\\padding\\|
       |             |       |\\\\\\\\\\\|
       +---------------------------------+
 Bytes:      4           1         3

    现在无论是定义一个单独的MS2变量还是MS2数组,均能保证所有元素的所有字段都满足对齐规定。那么sizeof(MS2)仍然是8,而a的偏移为0,b的偏移是4。

    好的,现在你已经掌握了结构体内存布局的基本准则,尝试分析一个稍微复杂点的类型吧。

  typedef struct ms3
  {
     char a;
     short b;
     double c;
  } MS3;

    我想你一定能得出如下正确的布局图:
         
        padding  
           |
      _____v_________________________________
      |   |\|     |\\\\\\\\\|               |
      | a|\|  b |\padding\|       c      |
      |   |\|     |\\\\\\\\\|               |
      +-------------------------------------+
Bytes:  1  1   2       4            8
           
    sizeof(short)等于2,b字段应从偶数地址开始,所以a的后面填充一个字节,而sizeof(double)等于8,c字段要从8倍数地址开始,前面的a、b字段加上填充字节已经有4 bytes,所以b后面再填充4个字节就可以保证c字段的对齐要求了。sizeof(MS3)等于16,b的偏移是2,c的偏移是8。接着看看结构体中字段还是结构类型的情况:

  typedef struct ms4
  {
     char a;
     MS3 b;
  } MS4;

    MS3中内存要求最严格的字段是c,那么MS3类型数据的对齐模数就与double的一致(为8),a字段后面应填充7个字节,因此MS4的布局应该是:
       _______________________________________
       |       |\\\\\\\\\\\|                 |
       |   a  |\\padding\\|       b        |
       |       |\\\\\\\\\\\|                 |
       +-------------------------------------+
 Bytes:    1         7             16

    显然,sizeof(MS4)等于24,b的偏移等于8。

    在实际开发中,我们可以通过指定/Zp编译选项来更改编译器的对齐规则。比如指定/Zpn(VC7.1中n可以是1、2、4、8、16)就是告诉编译器最大对齐模数是n。在这种情况下,所有小于等于n字节的基本数据类型的对齐规则与默认的一样,但是大于n个字节的数据类型的对齐模数被限制为n。事实上,VC7.1的默认对齐选项就相当于/Zp8。仔细看看MSDN对这个选项的描述,会发现它郑重告诫了程序员不要在MIPS和Alpha平台上用/Zp1和/Zp2选项,也不要在16位平台上指定/Zp4和/Zp8(想想为什么?)。改变编译器的对齐选项,对照程序运行结果重新分析上面4种结构体的内存布局将是一个很好的复习。

    到了这里,我们可以回答本文提出的最后一个问题了。结构体的内存布局依赖于CPU、操作系统、编译器及编译时的对齐选项,而你的程序可能需要运行在多种平台上,你的源代码可能要被不同的人用不同的编译器编译(试想你为别人提供一个开放源码的库),那么除非绝对必需,否则你的程序永远也不要依赖这些诡异的内存布局。顺便说一下,如果一个程序中的两个模块是用不同的对齐选项分别编译的,那么它很可能会产生一些非常微妙的错误。如果你的程序确实有很难理解的行为,不防仔细检查一下各个模块的编译选项。

### Win32平台下的微软C编译器(cl.exe for 80×86)的对齐策略:

1) 结构体变量的首地址能够被其最宽基本类型成员的大小所整除;
备注:编译器在给结构体开辟空间时,首先找到结构体中最宽的基本数据类型,然后寻找内存地址能被该基本数据类型所整除的位置,作为结构体的首地址。将这个最宽的基本数据类型的大小作为上面介绍的对齐模数。
2) 结构体每个成员相对于结构体首地址的偏移量(offset)都是成员大小的整数倍,如有需要编译器会在成员之间加上填充字节(internal adding);
备注:为结构体的一个成员开辟空间之前,编译器首先检查预开辟空间的首地址相对于结构体首地址的偏移是否是本成员的整数倍,若是,则存放本成员,反之,则在本成员和上一个成员之间填充一定的字节,以达到整数倍的要求,也就是将预开辟空间的首地址后移几个字节。
3) 结构体的总大小为结构体最宽基本类型成员大小的整数倍,如有需要,编译器会在最末一个成员之后加上填充字节(trailing padding)。
备注:结构体总大小是包括填充字节,最后一个成员满足上面两条以外,还必须满足第三条,否则就必须在最后填充几个字节以达到本条要求。

 

如果结构体中含有位域(bit-field),那么VC中准则又要有所更改:
1) 如果相邻位域字段的类型相同,且其位宽之和小于类型的sizeof大小,则后面的字段将紧邻前一个字段存储,直到不能容纳为止;
2) 如果相邻位域字段的类型相同,但其位宽之和大于类型的sizeof大小,则后面的字段将从新的存储单元开始,其偏移量为其类型大小的整数倍;
3) 如果相邻的位域字段的类型不同,则各编译器的具体实现有差异,VC6采取不压缩方式(不同位域字段存放在不同的位域类型字节中),Dev-C++和GCC都采取压缩方式;

备注:当两字段类型不一样的时候,对于不压缩方式

4) 如果位域字段之间穿插着非位域字段,则不进行压缩;

5) 整个结构体的总大小为最宽基本类型成员大小的整数倍。

### 而在GNU GCC编译器中,遵循的准则有些区别,对齐模数不是像上面所述的那样,根据最宽的基本数据类型来定。在GCC中,对齐模数的准则是:对齐模数最大只能是 4,也就是说,即使结构体中有double类型,对齐模数还是4,所以对齐模数只能是1,2,4。而且在上述的三条中,第2条里,offset必须是成员大小的整数倍,如果这个成员大小小于等于4则按照上述准则进行,但是如果大于4了,则结构体每个成员相对于结构体首地址的偏移量(offset)只能按照是4的整数倍来进行判断是否添加填充。

 

  • 对齐模数的选择只能是根据基本数据类型,所以对于结构体中嵌套结构体,只能考虑其拆分的基本数据类型。而对于对齐准则中的第2条,确是要将整个结构体看成是一个成员,成员大小按照该结构体根据对齐准则判断所得的大小。
  • 类对象在内存中存放的方式和结构体类似,这里就不再说明。需要指出的是,类对象的大小只是包括类中非静态成员变量所占的空间,如果有虚函数,那么再另外增加一个指针所占的空间即可。
  • 1.内存对齐与编译器设置有关,首先要搞清编译器这个默认值是多少
  • 2. 如果不想编译器默认的话,可以通过#pragma pack(n)来指定按照n对齐
  • 3.每个结构体变量对齐,如果对齐参数n(编译器默认或者通过pragma指定)大于该变量所占字节数(m),那么就按照m对齐,内存偏移后的地址是m的倍数,否则是按照n对齐,内存偏移后的地址是n的倍数。也就是最小化长度规则
  • 4.结构体总大小: 对齐后的长度必须是成员中最大的对齐参数的整数倍。最大对齐参数是从第三步得到的。
  • 5.补充:如果结构体A中还要结构体B,那么B的对齐方式是选它里面最长的成员的对齐方式
  • 阅读(1227) | 评论(0) | 转发(0) |
    给主人留下些什么吧!~~