Chinaunix首页 | 论坛 | 博客
  • 博客访问: 282178
  • 博文数量: 276
  • 博客积分: 5035
  • 博客等级: 大校
  • 技术积分: 2381
  • 用 户 组: 普通用户
  • 注册时间: 2009-07-10 10:11
个人简介

全国奥数金牌教练

文章存档

2011年(3)

2010年(14)

2009年(259)

我的朋友
最近访客

分类:

2009-08-15 08:11:25

我们已经学习过三角形、正方形、长方形、平行四边形、梯形以及圆、扇形等基本图形的面积计算,图形及计算公式如下:

 

    

  正方形面积=边长×边长=a2

  长方形面积=长×宽=ab

  平行四边形面积=底×高=ah

  

  圆面积=半径×半径×π=πr2

  扇形面积=半径×半径×π×圆心角的度数÷360°

      

  在实际问题中,我们遇到的往往不是基本图形,而是由基本图形组合、拼凑成的组合图形,它们的面积不能直接用公式计算。在本讲和后面的两讲中,我们将学习如何计算它们的面积。

  例1 小两个正方形组成下图所示的组合图形。已知组合图形的周长是52厘米,DG=4厘米,求阴影部分的面积。

  分析与解:组合图形的周长并不等于两个正方形的周长之和,因为CG部分重合了。用组合图形的周长减去DG,就得到大、小正方形边长之和的三倍,所以两个正方形的边长之和等于52-4)÷3=16(厘米)。

  又由两个正方形的边长之差是4厘米,可求出

  大正方形边长=16+4)÷2=10(厘米),

  小正方形边长=16-4)÷2=6(厘米)。

  两个正方形的面积之和减去三角形ABD与三角形BEF的面积,就得到阴影部分的面积。

  102+62-10×10÷2-10+6)×6÷2=38(厘米2)。

  例2如左下图所示,四边形ABCDDEFG都是平行四边形,证明它们的面积相等。

  分析与证明:这道题两个平行四边形的关系不太明了,似乎无从下手。我们添加一条辅助线,即连结CE(见右上图),这时通过三角形DCE,就把两个平行四边形联系起来了。在平行四边形ABCD中,三角形DCE的底是DC,高与平行四边形ABCDDC上的高相等,所以平行四边形ABCD的面积是三角形DCE的两倍;同理,在平行四边形DEFG中,三角形DCE的底是DE,高与平行四边形DEFGDE上的高相等,所以平行四边形DEFG的面积也是三角形DCE的两倍。

  两个平行四边形的面积都是三角形DCE的两倍,所以它们的面积相等。

  例3如左下图所示,一个腰长是20厘米的等腰三角形的面积是140厘米2,在底边上任意取一点,这个点到两腰的垂线段的长分别是a厘米和b厘米。求a+b的长。

  分析与解ab与三角形面积的关系一下子不容易看出来。连结等腰三角形的顶点和底边上所取的点,把等腰三角形分为两个小三角形,它们的底都是20厘米,高分别为a厘米和b厘米(见右上图)。大三角形的面积与ab的关系就显露出来了。根据三角形的面积公式,两个小三角形的面积分别为  20×a÷220×b÷2

  因为这两个小三角形的面积之和等于原等腰三角形的面积,所以有

  20×a÷2+20×b÷2=140

  10×(a+b=140

  a+b=14(厘米)。

  在例2、例3中,通过添加辅助线,使图形间的关系更清晰,从而使问题得解。下面再看一例。

  例4如左下图所示,三角形ABC的面积是10厘米2,将ABBCCA分别延长一倍到DEF,两两连结DEF,得到一个新的三角形DEF。求三角形DEF的面积。

  分析与解:想办法沟通三角形ABC与三角形DEF的联系。连结FB(见右上图)。

  因为CA=AF,所以三角形ABC与三角ABF等底等高,面积相等。因为AB=BD,所以三角形ABF与三角形BDF等底等高,面积相等。由此得出,三角形ADF的面积是10+10=20(厘米2)。

  同理可知,三角形BDE与三角形CEF的面积都等于20厘米2

  所以三角形DEF的面积等于20×3+10=70(厘米2)。

  例5一个正方形,将它的一边截去15厘米,另一边截去10厘米,剩下的长方形比原来正方形的面积减少1725厘米2,求剩下的长方形的面积。

  分析与解:根据已知条件画出下页左上图,其中甲、乙、丙为截去的部分。

  由左上图知,丙是长15厘米、宽10厘米的矩形,面积为15×10=150(厘米2)。

  因为甲、丙形成的矩形的长等于原正方形的边长,乙、丙形成的矩形的长也等于原正方形的边长,所以可将两者拼成右上图的矩形。右上图矩形的宽等于10+15=25(厘米),长等于原正方形的边长,面积等于

  (甲+丙)+(乙+丙)

  = ++丙)+

  = 1725+150

  = 1875(厘米2)。

  所以原正方形的的边长等于1875÷25=75(厘米)。剩下的长方形的面积等于75×75-1725=3900(厘米2)。

  例6有红、黄、绿三块同样大小的正方形纸片,放在一个正方形盒的底部,它们之间互相叠合(见右图)。已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10,求正方形盒子底部的面积。

  分析与解:把黄色正方形纸片向左移动并靠紧盒子的左边。由于三个正方形纸片面积相等,所以原题图可以转化成下页右上图。此时露出的黄、绿两部分的面积相等,都等于

  (14+10)÷2=12

  因为绿:红=A∶黄,所以

  绿×黄=红×A

  A=绿×黄÷红

   =12×12÷20=7.2

  正方形盒子底部的面积是红++绿+A=20+12+12+7.2=51.2

 

阅读(750) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~