Chinaunix首页 | 论坛 | 博客
  • 博客访问: 519661
  • 博文数量: 187
  • 博客积分: 3011
  • 博客等级: 中校
  • 技术积分: 2092
  • 用 户 组: 普通用户
  • 注册时间: 2009-06-28 17:08
文章分类

全部博文(187)

文章存档

2011年(1)

2010年(8)

2009年(178)

我的朋友

分类: LINUX

2009-07-29 17:52:45

 probeusb子系统自动调用的一个函数,有USB设备接到硬件集线器时,usb子系统会根据production IDvendor ID的组合或者设备的classsubclassprotocol的组合来识别设备调用相应驱动程序的probe(探测)函数,对于skeleton来说,就是skel_probe。系统会传递给探测函数一个usb_interface *跟一个struct usb_device_id *作为参数。他们分别是该USB设备的接口描述(一般会是该设备的第0号接口,该接口的默认设置也是第0号设置)跟它的设备ID描述(包括Vendor IDProduction ID等)。probe函数比较长,我们分段来分析这个函数:

dev->udev = usb_get_dev(interface_to_usbdev(interface));

dev->interface = interface;

    在初始化了一些资源之后,可以看到第一个关键的函数调用——interface_to_usbdev。他同uo一个usb_interface来得到该接口所在设备的设备描述结构。本来,要得到一个usb_device只要用interface_to_usbdev就够了,但因为要增加对该usb_device的引用计数,我们应该在做一个usb_get_dev的操作,来增加引用计数,并在释放设备时用usb_put_dev来减少引用计数。这里要解释的是,该引用计数值是对该usb_device的计数,并不是对本模块的计数,本模块的计数要由kref来维护。所以,probe一开始就有初始化kref。事实上,kref_init操作不单只初始化kref,还将其置设成1。所以在出错处理代码中有kref_put,它把kref的计数减1,如果kref计数已经为0,那么kref会被释放。kref_put的第二个参数是一个函数指针,指向一个清理函数。注意,该指针不能为空,或者kfree。该函数会在最后一个对kref的引用释放时被调用(如果我的理解不准确,请指正)。下面是内核源码中的一段注释及代码:

/**

 * kref_put - decrement refcount for object.

* @kref: object.

 * @release: pointer to the function that will clean up the object when the

 *        last reference to the object is released.

 *        This pointer is required, and it is not acceptable to pass kfree

 *        in as this function.

 *

 * Decrement the refcount, and if 0, call release().

 * Return 1 if the object was removed, otherwise return 0.  Beware, if this

 * function returns 0, you still can not count on the kref from remaining in

 * memory.  Only use the return value if you want to see if the kref is now

 * gone, not present.

 */

int kref_put(struct kref *kref, void (*release)(struct kref *kref))

{

     WARN_ON(release == NULL);

     WARN_ON(release == (void (*)(struct kref *))kfree);

      /*

      * if current count is one, we are the last user and can release object

      * right now, avoiding an atomic operation on 'refcount'

      */

     if ((atomic_read(&kref->refcount) == 1) ||

         (atomic_dec_and_test(&kref->refcount))) {

         release(kref);

         return 1;

     }

     return 0;

}

    当我们执行打开操作时,我们要增加kref的计数,我们可以用kref_get,来完成。所有对struct kref的操作都有内核代码确保其原子性。

    得到了该usb_device之后,我们要对我们自定义的usb_skel各个状态跟资源作初始化。这部分工作的任务主要是向usb_skel注册该usb设备的端点。这里可能要补充以下一些关于usb_interface_descriptor的知识,但因为内核源码对该结构体的注释不多,所以只能靠个人猜测。在一个usb_host_interface结构里面有一个usb_interface_descriptor叫做desc的成员,他应该是用于描述该interface的一些属性,其中bNumEndpoints是一个8位(b for byte)的数字,他代表了该接口的端点数。probe然后遍历所有的端点,检查他们的类型跟方向,注册到usb_skel中。

     /* set up the endpoint information */

     /* use only the first bulk-in and bulk-out endpoints */

     iface_desc = interface->cur_altsetting;

     for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {

         endpoint = &iface_desc->endpoint[i].desc;

         if ( !dev->bulk_in_endpointAddr &&

              ((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK) = = USB_DIR_IN) &&

             ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) = = USB_ENDPOINT_XFER_BULK)) {

              /* we found a bulk in endpoint */

              buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);

              dev->bulk_in_size = buffer_size;

              dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;

              dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);

              if (!dev->bulk_in_buffer) {

                   err("Could not allocate bulk_in_buffer");

                   goto error;

              }

       }

         if (!dev->bulk_out_endpointAddr &&

            ((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK)= =USB_DIR_OUT) &&

               ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)= = USB_ENDPOINT_XFER_BULK)) {

              /* we found a bulk out endpoint */

              dev->bulk_out_endpointAddr = endpoint->bEndpointAddress;

         }

     }

     if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) {

         err("Could not find both bulk-in and bulk-out endpoints");

         goto error;

     }

 

 

 

 

 

接下来的工作是向系统注册一些以后会用的的信息。首先我们来说明一下usb_set_intfdata(),他向内核注册一个data,这个data的结构可以是任意的,这段程序向内核注册了一个usb_skel结构,就是我们刚刚看到的被初始化的那个,这个data可以在以后用usb_get_intfdata来得到。

usb_set_intfdata(interface, dev);

retval = usb_register_dev(interface, &skel_class);

    然后我们向这个interface注册一个skel_class结构。这个结构又是什么?我们就来看看这到底是个什么东西:

static struct usb_class_driver skel_class = {

     .name =       "skel%d",

     .fops =       &skel_fops,

     .minor_base = USB_SKEL_MINOR_BASE,

};

    它其实是一个系统定义的结构,里面包含了一名字、一个文件操作结构体还有一个次设备号的基准值。事实上它才是定义 真正完成对设备IO操作的函数。所以他的核心内容应该是skel_fops。这里补充一些我个人的估计:因为usb设备可以有多个interface,每个interface所定义的IO操作可能不一样,所以向系统注册的usb_class_driver要求注册到某一个interface,而不是device,因此,usb_register_dev的第一个参数才是interface,而第二个参数就是某一个usb_class_driver。通常情况下,linux系统用主设备号来识别某类设备的驱动程序,用次设备号管理识别具体的设备,驱动程序可以依照次设备号来区分不同的设备,所以,这里的次设备好其实是用来管理不同的interface的,但由于这个范例只有一个interface,在代码上无法求证这个猜想。

static struct file_operations skel_fops = {

     .owner = THIS_MODULE,

     .read =       skel_read,

     .write =   skel_write,

     .open =       skel_open,

     .release =    skel_release,

};

    这个文件操作结构中定义了对设备的读写、打开、释放(USB设备通常使用这个术语release)。他们都是函数指针,分别指向skel_readskel_writeskel_openskel_release这四个函数,这四个函数应该有开发人员自己实现。

    当设备被拔出集线器时,usb子系统会自动地调用disconnect,他做的事情不多,最重要的是注销class_driver(交还次设备号)和interfacedata:

dev = usb_get_intfdata(interface);

usb_set_intfdata(interface, NULL);

/* give back our minor */

usb_deregister_dev(interface, &skel_class);

    然后他会用kref_put(&dev->kref, skel_delete)进行清理,kref_put的细节参见前文。

    到目前为止,我们已经分析完usb子系统要求的各个主要操作,下一部分我们在讨论一下对USB设备的IO操作。

 

 

 

 

 

说到usb子系统的IO操作,不得不说usb request block,简称urb。事实上,可以打一个这样的比喻,usb总线就像一条高速公路,货物、人流之类的可以看成是系统与设备交互的数据,而urb就可以看成是汽车。在一开始对USB规范细节的介绍,我们就说过USBendpoint4种不同类型,也就是说能在这条高速公路上流动的数据就有四种。但是这对汽车是没有要求的,所以urb可以运载四种数据,不过你要先告诉司机你要运什么,目的地是什么。我们现在就看看struct urb的具体内容。它的内容很多,为了不让我的理解误导各位,大家最好还是看一看内核源码的注释,具体内容参见源码树下include/linux/usb.h

    在这里我们重点介绍程序中出现的几个关键字段:

struct usb_device  *dev

    urb所发送的目标设备。

unsigned int pipe

    一个管道号码,该管道记录了目标设备的端点以及管道的类型。每个管道只有一种类型和一个方向,它与他的目标设备的端点相对应,我们可以通过以下几个函数来获得管道号并设置管道类型:

     unsigned int usb_sndctrlpipe(struct usb_device *dev, unsigned int endpoint)

           把指定USB设备的指定端点设置为一个控制OUT端点。

     unsigned int usb_rcvctrlpipe(struct usb_device *dev, unsigned int endpoint)

           把指定USB设备的指定端点设置为一个控制IN端点。

     unsigned int usb_sndbulkpipe(struct usb_device *dev, unsigned int endpoint)

           把指定USB设备的指定端点设置为一个批量OUT端点。

    unsigned int usb_rcvbulkpipe(struct usb_device *dev, unsigned int endpoint)

           把指定USB设备的指定端点设置为一个批量OUT端点。

     unsigned int usb_sndintpipe(struct usb_device *dev, unsigned int endpoint)

           把指定USB设备的指定端点设置为一个中断OUT端点。

     unsigned int usb_rcvintpipe(struct usb_device *dev, unsigned int endpoint)

           把指定USB设备的指定端点设置为一个中断OUT端点。

     unsigned int usb_sndisocpipe(struct usb_device *dev, unsigned int endpoint)

           把指定USB设备的指定端点设置为一个等时OUT端点。

     unsigned int usb_rcvisocpipe(struct usb_device *dev, unsigned int endpoint)

           把指定USB设备的指定端点设置为一个等时OUT端点。

unsigned int transfer_flags

    当不使用DMA时,应该transfer_flags |= URB_NO_TRANSFER_DMA_MAP(按照代码的理解,希望没有错)。

int status

    当一个urb把数据送到设备时,这个urb会由系统返回给驱动程序,并调用驱动程序的urb完成回调函数处理。这时,status记录了这次数据传输的有关状态,例如传送成功与否。成功的话会是0

    要能够运货当然首先要有车,所以第一步当然要创建urb

    struct urb *usb_alloc_urb(int isoc_packets, int mem_flags);

    第一个参数是等时包的数量,如果不是乘载等时包,应该为0,第二个参数与kmalloc的标志相同。

    要释放一个urb可以用:

    void usb_free_urb(struct urb *urb);

    要承载数据,还要告诉司机目的地信息跟要运的货物,对于不同的数据,系统提供了不同的函数,对于中断urb,我们用

    void usb_fill_int_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,

                   void *transfer_buffer, int buffer_length,

                   usb_complete_t complete, void *context, int interval);

    这里要解释一下,transfer_buffer是一个要送/收的数据的缓冲,buffer_length是它的长度,completeurb完成回调函数的入口,context由用户定义,可能会在回调函数中使用的数据,interval就是urb被调度的间隔。

    对于批量urb和控制urb,我们用:

    void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,

                                    void *transfer_buffer, int buffer_length, usb_complete_t complete,

                                    void *context);

    void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,

                                    unsigned char* setup_packet,void *transfer_buffer,

                     int buffer_length, usb_complete_t complete,void *context);

    控制包有一个特殊参数setup_packet,它指向即将被发送到端点的设置数据报的数据。

    对于等时urb,系统没有专门的fill函数,只能对各urb字段显示赋值。

    有了汽车,有了司机,下一步就是要开始运货了,我们可以用下面的函数来提交urb

    int usb_submit_urb(struct urb *urb, int mem_flags);

    mem_flags有几种:GFP_ATOMICGFP_NOIOGFP_KERNEL,通常在中断上下文环境我们会用GFP_ATOMIC

    当我们的卡车运货之后,系统会把它调回来,并调用urb完成回调函数,并把这辆车作为函数传递给驱动程序。我们应该在回调函数里面检查status字段,以确定数据的成功传输与否。下面是用urb来传送数据的细节。

/* initialize the urb properly */

usb_fill_bulk_urb(urb, dev->udev,

                     usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr),

                     buf, writesize, skel_write_bulk_callback, dev);

urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

/* send the data out the bulk port */

retval = usb_submit_urb(urb, GFP_KERNEL);

    这里skel_write_bulk_callback就是一个完成回调函数,而他做的主要事情就是检查数据传输状态和释放urb

dev = (struct usb_skel *)urb->context;

/* sync/async unlink faults aren't errors */

if (urb->status && !(urb->status = = -ENOENT || urb->status == -ECONNRESET || urb->status = = -ESHUTDOWN)) {

         dbg("%s - nonzero write bulk status received: %d", __FUNCTION__, urb->status);

}

/* free up our allocated buffer */

usb_buffer_free(urb->dev, urb->transfer_buffer_length,

              urb->transfer_buffer, urb->transfer_dma);

    事实上,如果数据的量不大,那么可以不一定用卡车来运货,系统还提供了一种不用urb的传输方式,而usb-skeleton的读操作正是采用这种方式实现:

/* do a blocking bulk read to get data from the device */

retval = usb_bulk_msg(dev->udev,

                           usb_rcvbulkpipe(dev->udev, dev->bulk_in_endpointAddr),

                           dev->bulk_in_buffer,

                         min(dev->bulk_in_size, count),

                           &bytes_read, 10000);

/* if the read was successful, copy the data to userspace */

if (!retval) {

         if (copy_to_user(buffer, dev->bulk_in_buffer, bytes_read))

                retval = -EFAULT;

         else

                retval = bytes_read;

}

    程序使用了usb_bulk_msg来传送数据,它的原型如下:

    int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,void *data,

         int len, int *actual length, int timeout)

    这个函数会阻塞等待数据传输完成或者等到超时,data是输入/输出缓冲,len是它的大小,actual length是实际传送的数据大小,timeout是阻塞超时。

    对于控制数据,系统提供了另外一个函数,他的原型是:

    Int usb_contrl_msg(struct usb_device *dev, unsigned int pipe, __u8 request,

                                  __u8 requesttype, __u16 value, __u16 index, void *data,

                                  __u16 size, int timeout);

    request是控制消息的USB请求值、requesttype是控制消息的USB请求类型,value是控制消息的USB消息值,index是控制消息的USB消息索引。具体是什么,暂时不是很清楚,希望大家提供说明。

    至此,Linux下的USB驱动框架分析基本完成了。

 

 

 

 

阅读(903) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~