Chinaunix首页 | 论坛 | 博客
  • 博客访问: 513750
  • 博文数量: 187
  • 博客积分: 3011
  • 博客等级: 中校
  • 技术积分: 2092
  • 用 户 组: 普通用户
  • 注册时间: 2009-06-28 17:08
文章分类

全部博文(187)

文章存档

2011年(1)

2010年(8)

2009年(178)

我的朋友

分类: LINUX

2009-07-29 17:47:09

初次接触与OS相关的设备驱动编写,感觉还挺有意思的,为了不至于忘掉看过的东西,笔记跟总结当然不可缺,更何况我决定为嵌入式卖命了。好,言归正传,我说一说这段时间的收获,跟大家分享一下Linux的驱动开发。但这次只先针对LinuxUSB子系统作分析,因为周五研讨老板催货。当然,还会顺带提一下其他的驱动程序写法。

       事实上,Linux的设备驱动都遵循一个惯例——表征驱动程序(用driver更贴切一些,应该称为驱动器比较好吧)的结构体,结构体里面应该包含了驱动程序所需要的所有资源。用术语来说,就是这个驱动器对象所拥有的属性及成员。由于Linux的内核用c来编写,所以我们也按照这种结构化的思想来分析代码,但我还是希望从OO的角度来阐述这些细节。这个结构体的名字有驱动开发人员决定,比如说,鼠标可能有一个叫做mouse_devstruct,键盘可能由一个keyboard_devstructdev for device,我们做的只是设备驱动)。而这次我们来分析一下Linux内核源码中的一个usb-skeleton(就是usb驱动的骨架咯),自然,他定义的设备结构体就叫做usb-skel

struct usb_skel {

     struct usb_device *      udev;                 /* the usb device for this device */

     struct usb_interface *   interface;            /* the interface for this device */

     struct semaphore       limit_sem;         /* limiting the number of writes in progress */

     unsigned char *         bulk_in_buffer;     /* the buffer to receive data */

     size_t         bulk_in_size;                  /* the size of the receive buffer */

     __u8          bulk_in_endpointAddr;        /* the address of the bulk in endpoint */

     __u8          bulk_out_endpointAddr;      /* the address of the bulk out endpoint */

     struct kref   kref;

};

       这里我们得补充说明一下一些USB的协议规范细节。USB能够自动监测设备,并调用相应得驱动程序处理设备,所以其规范实际上是相当复杂的,幸好,我们不必理会大部分细节问题,因为Linux已经提供相应的解决方案。就我现在的理解来说,USB的驱动分为两块,一块是USBbus驱动,这个东西,Linux内核已经做好了,我们可以不管,但我们至少要了解他的功能。形象得说,USBbus驱动相当于铺出一条路来,让所有的信息都可以通过这条USB通道到达该到的地方,这部分工作由usb_core来完成。当USB设备接到USB控制器接口时,usb_core就检测该设备的一些信息,例如生产厂商ID和产品的ID,或者是设备所属的classsubclassprotocol,以便确定应该调用哪一个驱动处理该设备。里面复杂细节我们不用管,我们要做的是另一块工作——usb的设备驱动。也就是说,我们就等着usb_core告诉我们要工作了,我们才工作。

       从开发人员的角度看,每一个usb设备有若干个配置(configuration)组成,每个配置又可以有多个接口(interface),每个接口又有多个设置(setting图中没有给出),而接口本身可能没有端点或者多个端点(end point)。USB的数据交换通过端点来进行,主机与各个端点之间建立起单向的管道来传输数据。而这些接口可以分为四类:

 

控制(control

       用于配置设备、获取设备信息、发送命令或者获取设备的状态报告

中断(interrupt

       USB宿主要求设备传输数据时,中断端点会以一个固定的速率传送少量数据,还用于发送数据到USB设备以控制设备,一般不用于传送大量数据。

批量(bulk

       用于大量数据的可靠传输,如果总线上的空间不足以发送整个批量包,它会被分割成多个包传输。

等时(isochronous

       大量数据的不可靠传输,不保证数据的到达,但保证恒定的数据流,多用于数据采集。

       Linux中用struct usb_host_endpoint来描述USB端点,每个usb_host_endpoint中包含一个struct usb_endpoint_descriptor结构体,当中包含该端点的信息以及设备自定义的各种信息,这些信息包括:

bEndpointAddressb for byte

       8位端点地址,其地址还隐藏了端点方向的信息(之前说过,端点是单向的),可以用掩码USB_DIR_OUTUSB_DIR_IN来确定。

bmAttributes

       端点的类型,结合USB_ENDPOINT_XFERTYPE_MASK可以确定端点是USB_ENDPOINT_XFER_ISOC(等时)、USB_ENDPOINT_XFER_BULK(批量)还是USB_ENDPOINT_XFER_INT(中断)。

wMaxPacketSize

       端点一次处理的最大字节数。发送的BULK包可以大于这个数值,但会被分割传送。

bInterval

       如果端点是中断类型,该值是端点的间隔设置,以毫秒为单位。

       在逻辑上,一个USB设备的功能划分是通过接口来完成的。比如说一个USB扬声器,可能会包括有两个接口:一个用于键盘控制,另外一个用于音频流传输。而事实上,这种设备需要用到不同的两个驱动程序来操作,一个控制键盘,一个控制音频流。但也有例外,比如蓝牙设备,要求有两个接口,第一用于ACLEVENT的传输,另外一个用于SCO链路,但两者通过一个驱动控制。在Linux上,接口使用struct usb_interface来描述,以下是该结构体中比较重要的字段:

struct usb_host_interface *altsetting(注意不是usb_interface

       其实据我理解,他应该是每个接口的设置,虽然名字上有点奇怪。该字段是一个设置的数组(一个接口可以有多个设置),每个usb_host_interface都包含一套由struct usb_host_endpoint定义的端点配置。但这些配置次序是不定的。

unsigned num_altstting

       可选设置的数量,即altsetting所指数组的元素个数。

struct usb_host_interface *cur_altsetting

       当前活动的设置,指向altsetting数组中的一个。

int minor

       当捆绑到该接口的USB驱动程序使用USB主设备号时,USB core分配的次设备号。仅在成功调用usb_register_dev之后才有效。    

       除了它可以用struct usb_host_config来描述之外,到现在为止,我对配置的了解不多。而整个USB设备则可以用struct usb_device来描述,但基本上只会用它来初始化函数的接口,真正用到的应该是我们之前所提到的自定义的一个结构体。


 
好,了解过USB一些规范细节之后,我们现在来看看Linux的驱动框架。事实上,Linux的设备驱动,特别是这种hotplugUSB设备驱动,会被编译成模块,然后在需要时挂在到内核。要写一个Linux的模块并不复杂,以一个helloworld为例:

#include

#include

MODULE_LICENSE(“GPL”);

static int hello_init(void)

{

     printk(KERN_ALERT “Hello World!\n”);

     return 0;

}

static int hello_exit(void)

{

     printk(KERN_ALERT “GOODBYE!\n”);

}

module_init(hello_init);

module_exit(hello_exit);

    这个简单的程序告诉大家应该怎么写一个模块,MODULE_LICENSE告诉内核该模块的版权信息,很多情况下,用GPL或者BSD,或者两个,因为一个私有模块一般很难得到社区的帮助。module_initmodule_exit用于向内核注册模块的初始化函数和模块推出函数。如程序所示,初始化函数是hello_init,而退出函数是hello_exit

    另外,要编译一个模块通常还需要用到内核源码树中的makefile,所以模块的Makefile可以写成:

ifneq ($(KERNELRELEASE),)

obj-m:= hello.o#usb-dongle.o

else

KDIR:= /usr/src/linux-headers-$(shell uname -r)

BDIR:= $(shell pwd)

default:

     $(MAKE) -C $(KDIR) M=$(PWD) modules

.PHONY: clean

clean:

     make -C $(KDIR) M=$(BDIR) clean

endif

可以用insmodrmmod来验证模块的挂在跟卸载,但必须用root的身份登陆命令行,用普通用户加su或者sudoUbuntu上的测试是不行的。


 
 
 
下面分析一下usb-skeleton的源码。这个范例程序可以在linux-2.6.17/drivers/usb下找到,其他版本的内核程序源码可能有所不同,但相差不大。大家可以先找到源码看一看,先有个整体印象。

    之前已经提到,模块先要向内核注册初始化跟销毁函数:

static int __init usb_skel_init(void)

{

     int result;

     /* register this driver with the USB subsystem */

     result = usb_register(&skel_driver);

     if (result)

         err("usb_register failed. Error number %d", result);

     return result;

}

static void __exit usb_skel_exit(void)

{

     /* deregister this driver with the USB subsystem */

     usb_deregister(&skel_driver);

}

module_init (usb_skel_init);

module_exit (usb_skel_exit);

MODULE_LICENSE("GPL");

    从代码开来,这个initexit函数的作用只是用来注册驱动程序,这个描述驱动程序的结构体是系统定义的标准结构struct usb_driver,注册和注销的方法很简单,usb_registerstruct *usb_driver, usb_deregisterstruct *usb_driver。那这个结构体需要做些什么呢?他要向系统提供几个函数入口,跟驱动的名字:

static struct usb_driver skel_driver = {

     .name =      "skeleton",

     .probe =     skel_probe,

     .disconnect = skel_disconnect,

     .id_table =    skel_table,

};

    从代码看来,usb_driver需要初始化四个东西:模块的名字skeletonprobe函数skel_probe,disconnect函数skel_disconnect,以及id_table

    在解释skel_driver各个成员之前,我们先来看看另外一个结构体。这个结构体的名字有开发人员自定义,它描述的是该驱动拥有的所有资源及状态:

struct usb_skel {

     struct usb_device *      udev;                 /* the usb device for this device */

     struct usb_interface *   interface;            /* the interface for this device */

     struct semaphore       limit_sem;         /* limiting the number of writes in progress */

     unsigned char *         bulk_in_buffer;     /* the buffer to receive data */

     size_t         bulk_in_size;                  /* the size of the receive buffer */

     __u8          bulk_in_endpointAddr;        /* the address of the bulk in endpoint */

     __u8          bulk_out_endpointAddr;      /* the address of the bulk out endpoint */

     struct kref   kref;

};

    我们先来对这个usb_skel作个简单分析,他拥有一个描述usb设备的结构体udev,一个接口interface,用于并发访问控制的semaphore(信号量) limit_sem,用于接收数据的缓冲bulk_in_buffer及其尺寸bulk_in_size,然后是批量输入输出端口地址bulk_in_endpointAddrbulk_out_endpointAddr,最后是一个内核使用的引用计数器。他们的作用我们将在后面的代码中看到。

    我们再回过头来看看skel_driver

    name用来告诉内核模块的名字是什么,这个注册之后有系统来使用,跟我们关系不大。

    id_table用来告诉内核该模块支持的设备。usb子系统通过设备的production IDvendor ID的组合或者设备的classsubclassprotocol的组合来识别设备,并调用相关的驱动程序作处理。我们可以看看这个id_table到底是什么东西:

/* Define these values to match your devices */

#define USB_SKEL_VENDOR_ID  0xfff0

#define USB_SKEL_PRODUCT_ID 0xfff0

/* table of devices that work with this driver */

static struct usb_device_id skel_table [] = {

     { USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) },

     { }                    /* Terminating entry */

};

MODULE_DEVICE_TABLE (usb, skel_table); 

    MODULE_DEVICE_TABLE的第一个参数是设备的类型,如果是USB设备,那自然是usb(如果是PCI设备,那将是pci,这两个子系统用同一个宏来注册所支持的设备。这涉及PCI设备的驱动了,在此先不深究)。后面一个参数是设备表,这个设备表的最后一个元素是空的,用于标识结束。代码定义了USB_SKEL_VENDOR_ID0xfff0USB_SKEL_PRODUCT_ID0xfff0,也就是说,当有一个设备接到集线器时,usb子系统就会检查这个设备的vendor IDproduct ID,如果它们的值是0xfff0时,那么子系统就会调用这个skeleton模块作为设备的驱动。

 
 
 
 
 
 
阅读(831) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~