USB Gadget是分层的软件结构,本文分析的是2.6.32.2版本的Gadget软件结构,这个软件结构与以前版本的变化很大。USB Gadget软件结构总共分为三层:一. UDC层 这一层是与硬件相关层。相关文件s3c2410_udc.c s3c2410_udc.h。s3c2410设备控制器作为一个linux设备在这一层是作为platform设备而注册到linux设备模型中的。相关数据结构以及相关函数如下:1 数据结构- struct s3c2410_udc {
- spinlock_t lock;
-
- struct s3c2410_ep ep[S3C2410_ENDPOINTS];
- int address;
- struct usb_gadget gadget;
- struct usb_gadget_driver *driver;
- struct s3c2410_request fifo_req;
- u8 fifo_buf[EP_FIFO_SIZE];
- u16 devstatus;
-
- u32 port_status;
- int ep0state;
-
- unsigned got_irq : 1;
-
- unsigned req_std : 1;
- unsigned req_config : 1;
- unsigned req_pending : 1;
- u8 vbus;
- struct dentry *regs_info;
- };
s3c2410_udc.c中声明了一个结构体变量memory,这儿变量代表了S3C2410的USB设备控制器,包括各种信息。- static struct s3c2410_udc memory = {
- .gadget = {
- .ops = &s3c2410_ops,
- .ep0 = &memory.ep[0].ep,
- .name = gadget_name,
- .dev = {
- .init_name = "gadget",
- },
- },
-
-
- .ep[0] = {
- .num = 0,
- .ep = {
- .name = ep0name,
- .ops = &s3c2410_ep_ops,
- .maxpacket = EP0_FIFO_SIZE,
- },
- .dev = &memory,
- },
-
-
- .ep[1] = {
- .num = 1,
- .ep = {
- .name = "ep1-bulk",
- .ops = &s3c2410_ep_ops,
- .maxpacket = EP_FIFO_SIZE,
- },
- .dev = &memory,
- .fifo_size = EP_FIFO_SIZE,
- .bEndpointAddress = 1,
- .bmAttributes = USB_ENDPOINT_XFER_BULK,
- },
- .ep[2] = {
- .num = 2,
- .ep = {
- .name = "ep2-bulk",
- .ops = &s3c2410_ep_ops,
- .maxpacket = EP_FIFO_SIZE,
- },
- .dev = &memory,
- .fifo_size = EP_FIFO_SIZE,
- .bEndpointAddress = 2,
- .bmAttributes = USB_ENDPOINT_XFER_BULK,
- },
- .ep[3] = {
- .num = 3,
- .ep = {
- .name = "ep3-bulk",
- .ops = &s3c2410_ep_ops,
- .maxpacket = EP_FIFO_SIZE,
- },
- .dev = &memory,
- .fifo_size = EP_FIFO_SIZE,
- .bEndpointAddress = 3,
- .bmAttributes = USB_ENDPOINT_XFER_BULK,
- },
- .ep[4] = {
- .num = 4,
- .ep = {
- .name = "ep4-bulk",
- .ops = &s3c2410_ep_ops,
- .maxpacket = EP_FIFO_SIZE,
- },
- .dev = &memory,
- .fifo_size = EP_FIFO_SIZE,
- .bEndpointAddress = 4,
- .bmAttributes = USB_ENDPOINT_XFER_BULK,
- }
-
- };
2 函数 platform设备需要注册一个platform_driver的结构体:- static struct platform_driver udc_driver_2410 = {
- .driver = {
- .name = "s3c2410-usbgadget",
- .owner = THIS_MODULE,
- },
- .probe = s3c2410_udc_probe,
- .remove = s3c2410_udc_remove,
- .suspend = s3c2410_udc_suspend,
- .resume = s3c2410_udc_resume,
- };
结构体中的相关函数需要自己实现。最关键的函数就是s3c2410_udc_probe。这个函数在platform总线为驱动程序找到合适的设备后调用,在函数内初始化设备的时钟,申请io资源以及irq资源初始化platform设备结构体struct s3c2410_udc memory。 以上的数据结构以及函数是UDC的硬件层,不同的UDC采取不同的策略。s3c2410是集成的USB设备控制器,所以就是采用platform驱动的形式来注册的。如果系统是外接的USB设备控制器,那么则会采用相应总线的注册形式,比如PCI等。platform驱动的唯一目的就是分配资源以及初级初始化硬件,对于USB设备层和功能驱动层都没有影响。UDC层与USB设备层是通过另外的数据结构进行交互的。这种方式就是使用两个结构体与两个函数, 两个结构体分别是struct usb_gadget与struct usb_gadget_driver,他们都是嵌入在struct s3c2410_udc结构中的,但是是由不同软件层的代码初始化的。首先看struct usb_gadget,他是在定义memory的时候就进行了初始化,是在UDC层中初始化的。而struct usb_gadget_driver是在USB设备层中初始化的,他是通过usb_gadget_register_driver(struct usb_gadget_driver *driver)函数从USB设备层传过来然后赋值给memory的。这里出现一个关键的函数usb_gadget_register_driver(struct usb_gadget_driver *driver)这个函数就是UDC层与USB设备层进行交互的函数。设备设备层通过调用它与UDC层联系在一起。这个函数将usb_gadget与usb_gadget_driver联系在一起。向USB设备层提供usb_gadget_register_driver(struct usb_gadget_driver *driver)是UDC层的基本任务,但是UDC层要做的不仅如此,UDC层还需要提供为usb_gadget服务的相关函数,这些函数会通过usb_gadget传递给USB设备层。UDC层还需要提供USB设备的中断处理程序,中断处理尤其重要。因为所有的USB传输都是由主机发起,而有没有USB传输完全由USB中断判定,所以USB中断处理程序是整个软件架构的核心。UDC层主要提供以下的函数与数据结构:
(1) usb_gadget操作函数集合
- static const struct usb_gadget_ops s3c2410_ops = {
- .get_frame = s3c2410_udc_get_frame,
- .wakeup = s3c2410_udc_wakeup,
- .set_selfpowered = s3c2410_udc_set_selfpowered,
- .pullup = s3c2410_udc_pullup,
- .vbus_session = s3c2410_udc_vbus_session,
- .vbus_draw = s3c2410_vbus_draw,
- };
这些函数都是由UDC层来实现的。(2) 端点操作函数集合- static const struct usb_ep_ops s3c2410_ep_ops = {
- .enable = s3c2410_udc_ep_enable,
- .disable = s3c2410_udc_ep_disable,
-
- .alloc_request = s3c2410_udc_alloc_request,
- .free_request = s3c2410_udc_free_request,
-
- .queue = s3c2410_udc_queue,
- .dequeue = s3c2410_udc_dequeue,
-
- .set_halt = s3c2410_udc_set_halt,
- };
(3) USB 中断处理程序- static irqreturn_t s3c2410_udc_irq(int dummy, void *_dev)
(4) 其他相关辅助函数,比如调试相关函数。二 USB设备层 USB设备层,虽然名字上与设备相关。但是属于硬件无关层。这一层相关的代码是composite.c,composite.h。这一层的功能是隔离Gadget功能驱动与硬件相关层。使得功能驱动直接与USB设备层交互不用考虑硬件的相关细节。还有USB设备层提供了USB设备的一些基本数据结构,不同的Gadget功能驱动可以共同调用。如果没有这一层,则每一个功能驱动都需要实现自己的USB设备,导致了代码重用率很高。这一层向下与UDC层进行交互,向上与Gadget功能驱动层进行交互。在UDC层已经介绍了USB设备层向下与UDC层交互方式主要是通过调用usb_gadget_register_driver(struct usb_gadget_driver *driver),这个函数是UDC层提供的。而这个函数传递的参数就是一个usb_gadget_driver的结构体。以下是这个结构体定义:- struct usb_gadget_driver {
- char *function;
- enum usb_device_speed speed;
- int (*bind)(struct usb_gadget *);
- void (*unbind)(struct usb_gadget *);
- int (*setup)(struct usb_gadget *,
- const struct usb_ctrlrequest *);
- void (*disconnect)(struct usb_gadget *);
- void (*suspend)(struct usb_gadget *);
- void (*resume)(struct usb_gadget *);
-
-
- struct device_driver driver;
- };
在composite.c中声明了一个这样的一个结构体变量:composite_driver,这个结构体变量就是传给usb_gadget_register_driver(struct usb_gadget_driver *driver)的参数。- static struct usb_gadget_driver composite_driver = {
- .speed = USB_SPEED_HIGH,
-
- .bind = composite_bind,
- .unbind = __exit_p(composite_unbind),
-
- .setup = composite_setup,
- .disconnect = composite_disconnect,
-
- .suspend = composite_suspend,
- .resume = composite_resume,
-
- .driver = {
- .owner = THIS_MODULE,
- },
- };
以上所有的函数集都需要自己实现,这些函数的大部分参数都是usb_gadget。可以看出这些函数都是与UDC层相关的。以上数据结构是与UDC进行交互的,下面的数据结构以及函数是USB设备层与Gadget功能驱动层进行交互的。(1) 数据结构
- struct usb_composite_dev {
- struct usb_gadget *gadget;
- struct usb_request *req;
- unsigned bufsiz;
-
- struct usb_configuration *config;
-
-
-
- struct usb_device_descriptor desc;
- struct list_head configs;
- struct usb_composite_driver *driver;
- u8 next_string_id;
-
-
-
-
- unsigned deactivations;
-
-
- spinlock_t lock;
- };
这个结构代表一个USB设备。可以看出结构体中有设备描述符以及配置。还有指向usb_gadget与usb_compsite_driver的指针。说明这个结构体联系了UDC层与功能驱动层。这个结构内嵌在了usb_gadget中,是在composite_bind函数中分配与初始化的。- struct usb_composite_driver {
- const char *name;
- const struct usb_device_descriptor *dev;
- struct usb_gadget_strings **strings;
-
-
-
-
-
-
- int (*bind)(struct usb_composite_dev *);
- int (*unbind)(struct usb_composite_dev *);
-
-
- void (*suspend)(struct usb_composite_dev *);
- void (*resume)(struct usb_composite_dev *);
- };
这个结构体代表一个USB设备驱动,是联系功能驱动的主要数据结构。由功能驱动层声明并初始化。(2) 函数- int __init usb_composite_register(struct usb_composite_driver *driver)
- {
- if (!driver || !driver->dev || !driver->bind || composite)
- return -EINVAL;
-
- if (!driver->name)
- driver->name = "composite";
- composite_driver.function = (char *) driver->name;
- composite_driver.driver.name = driver->name;
- composite = driver;
-
- return usb_gadget_register_driver(&composite_driver);
- }
这个函数是由Gadget功能驱动层调用的,他简单初始化了composite_driver。然后调用usb_gadget_register_driver。composite是usb_composite_drver类型的全局指针这里赋值了功能驱动传递过来的driver。所以功能驱动层与USB设备层联系在了一起,usb_gadget_register_driver调用后UDC层与USB设备层联系到了一起。usb_composite_register是在功能驱动的模块初始化的函数中进行的调用。所以只要功能驱动一加载,三个软件层就通过数据结构联系在了一起。三 Gadget 功能驱动层 Gadget 功能驱动层是USB Gadget软件结构的最上层。主要是实现USB设备的功能,这一层通常与linux内核的其他层有密切的联系。模拟U盘的gadget就与文件系统层与块IO层有着联系。这里主要介绍最简单的Gadget 功能驱动zero。这一层包括zero.c。该驱动是作为一个模块注册到内核的,首先看一下他的模块初始化函数:- static int __init init(void)
- {
- return usb_composite_register(&zero_driver);
- }
非常简单,只调用了usb_composite_register,上面已经说到这个函数一旦调用三个软件层就联系到了一起。函数的参数是zero_driver。这是一个usb_composite_driver的结构体,有如下声明:- static struct usb_composite_driver zero_driver = {
- .name = "zero",
- .dev = &device_desc,
- .strings = dev_strings,
- .bind = zero_bind,
- .unbind = zero_unbind,
- .suspend = zero_suspend,
- .resume = zero_resume,
- };
zero只要实现上面的函数集合就可以了,至此Linux下USB Gadget软件结构就分析完了。这个只是三层怎样联系起来的,但是数据怎样传输的还得另行分析。主要软件结构如下图所示:http://blog.csdn.net/yaozhenguo2006/article/details/7690707
阅读(1516) | 评论(0) | 转发(3) |