Chinaunix首页 | 论坛 | 博客
  • 博客访问: 503770
  • 博文数量: 121
  • 博客积分: 4001
  • 博客等级: 上校
  • 技术积分: 1390
  • 用 户 组: 普通用户
  • 注册时间: 2009-03-13 21:48
文章分类

全部博文(121)

文章存档

2011年(4)

2010年(11)

2009年(106)

我的朋友

分类:

2009-11-30 17:06:34

引用地址:http://www.onlyblog.com/tb.asp?id=6822&TBcode=200710092128028Ja44Yyt0w

6.3.1  硬件调试器

硬件电路板制作完成以后,这时上面还没有任何程序,就叫作裸板。首要的工作是把程序或者固件加载到裸板上,这就要通过硬件工具来完成。习惯上,这种硬件工具叫作仿真器。

仿真器可以通过处理器的JTAG等接口控制板子,直接把程序下载到目标板内存,或者进行Flash编程。如果板上的Flash是可以拔插的,就可以通过专用的Flash烧写器来完成。在第4章介绍过目标板跟主机之间的连接,其中JTAG等接口就是专门用来连接仿真器的。

仿真器还有一个重要的功能就是在线调试程序,这对于调试Bootloader和硬件测试程序很有用。

从最简单的JTAG电缆,到ICE仿真器,再到可以调试Linux内核的仿真器。

复杂的仿真器可以支持与计算机间的以太网或者USB接口通信。

对于U-Boot的调试,可以采用BDI2000BDI2000完全可以反汇编地跟踪Flash中的程序,也可以进行源码级的调试。

使用BDI2000调试U-boot的方法如下。

1)配置BDI2000和目标板初始化程序,连接目标板。

2)添加U-Boot的调试编译选项,重新编译。

U-Boot的程序代码是位置相关的,调试的时候尽量在内存中调试,可以修改连接定位地址TEXT_BASETEXT_BASEboard//config.mk中定义。

另外,如果有复位向量也需要先从链接脚本中去掉。链接脚本是board//
u-boot.lds

添加调试选项,在config.mk文件中查找,DBGFLAGS,加上-g选项。然后重新编译U-Boot

3)下载U-Boot到目标板内存。

通过BDI2000的下载命令LOAD,把程序加载到目标板内存中。然后跳转到U-Boot入口。

4)启动GDB调试。

启动GDB调试,这里是交叉调试的GDBGDBBDI2000建立链接,然后就可以设置断点执行了。

 

$ arm-linux-gdb u-boot

(gdb)target remote 192.168.1.100:2001

(gdb)stepi

(gdb)b start_armboot

(gdb)c
 
 

6.3.2  软件跟踪

假如U-Boot没有任何串口打印信息,手头又没有硬件调试工具,那样怎么知道U-Boot执行到什么地方了呢?可以通过开发板上的LED指示灯判断。

开发板上最好设计安装八段数码管等LED,可以用来显示数字或者数字位。

U-Boot可以定义函数show_boot_progress (int status),用来指示当前启动进度。在include/common.h头文件中声明这个函数。

 

#ifdef CONFIG_SHOW_BOOT_PROGRESS

void    show_boot_progress (int status);

#endif

 

CONFIG_SHOW_BOOT_PROGRESS是需要定义的。这个在板子配置的头文件中定义。CSB226开发板对这项功能有完整实现,可以参考。在头文件include/configs/csb226.h中,有下列一行。

 

#define CONFIG_SHOW_BOOT_PROGRESS       1

 

函数show_boot_progress (int status)的实现跟开发板关系密切,所以一般在board目录下的文件中实现。看一下CSB226board/csb226/csb226.c中的实现函数。

 

/** 设置CSB226板的012三个指示灯的开关状态

 * csb226_set_led: - switch LEDs on or off

 * @param led:   LED to switch (0,1,2)

 * @param state: switch on (1) or off (0)

 */

void csb226_set_led(int led, int state)

{

      switch(led) {

             case 0: if (state==1) {

                              GPCR0 |= CSB226_USER_LED0;

                    } else if (state==0) {

                            GPSR0 |= CSB226_USER_LED0;

                    }

                    break;

             case 1: if (state==1) {

                              GPCR0 |= CSB226_USER_LED1;

                    } else if (state==0) {

                              GPSR0 |= CSB226_USER_LED1;

                    }

                    break;

             case 2: if (state==1) {

                              GPCR0 |= CSB226_USER_LED2;

                  } else if (state==0) {

                          GPSR0 |= CSB226_USER_LED2;

                  }

                  break;

      }

      return;

}

/** 显示启动进度函数,在比较重要的阶段,设置三个灯为亮的状态(1, 5, 15*/

void show_boot_progress (int status)

{

      switch(status) {

            case  1: csb226_set_led(0,1); break;

            case  5: csb226_set_led(1,1); break;

            case 15: csb226_set_led(2,1); break;

      }

      return;

}

 

这样,在U-Boot启动过程中就可以通过show_boot_progresss指示执行进度。比如hang()函数是系统出错时调用的函数,这里需要根据特定的开发板给定显示的参数值。

 

void hang (void)

{

      puts ("### ERROR ### Please RESET the board ###\n");

#ifdef CONFIG_SHOW_BOOT_PROGRESS

      show_boot_progress(-30);

#endif

      for (;;);

}
 
 

6.3.3  U-Boot启动过程

尽管有了调试跟踪手段,甚至也可以通过串口打印信息了,但是不一定能够判断出错原因。如果能够充分理解代码的启动流程,那么对准确地解决和分析问题很有帮助。

开发板上电后,执行U-Boot的第一条指令,然后顺序执行U-Boot启动函数。函数调用顺序如图6.3所示。

看一下board/smsk2410/u-boot.lds这个链接脚本,可以知道目标程序的各部分链接顺序。第一个要链接的是cpu/arm920t/start.o,那么U-Boot的入口指令一定位于这个程序中。下面详细分析一下程序跳转和函数的调用关系以及函数实现。

1cpu/arm920t/start.S

这个汇编程序是U-Boot的入口程序,开头就是复位向量的代码。

6.3  U-Boot启动代码流程图

 

_start: b       reset        //复位向量

       ldr   pc, _undefined_instruction

       ldr   pc, _software_interrupt

       ldr   pc, _prefetch_abort

       ldr   pc, _data_abort

       ldr   pc, _not_used

       ldr   pc, _irq      //中断向量

       ldr   pc, _fiq      //中断向量

 /* the actual reset code  */

reset:          //复位启动子程序

       /* 设置CPUSVC32模式 */

       mrs   r0,cpsr

       bic   r0,r0,#0x1f

       orr   r0,r0,#0xd3

       msr   cpsr,r0

/* 关闭看门狗 */

 

/* 这些初始化代码在系统重起的时候执行,运行时热复位从RAM中启动不执行 */

#ifdef CONFIG_INIT_CRITICAL

       bl    cpu_init_crit

#endif

 

relocate:                       /* U-Boot重新定位到RAM */

       adr   r0, _start          /* r0是代码的当前位置 */

       ldr   r1, _TEXT_BASE      /* 测试判断是从Flash启动,还是RAM */

       cmp     r0, r1          /* 比较r0r1,调试的时候不要执行重定位 */

       beq     stack_setup    /* 如果r0等于r1,跳过重定位代码 */

       /* 准备重新定位代码 */

       ldr   r2, _armboot_start

       ldr   r3, _bss_start

       sub   r2, r3, r2          /* r2 得到armboot的大小   */

       add   r2, r0, r2          /* r2 得到要复制代码的末尾地址 */

copy_loop: /* 重新定位代码 */

       ldmia r0!, {r3-r10}   /*从源地址[r0]复制 */

       stmia r1!, {r3-r10}   /* 复制到目的地址[r1] */

       cmp   r0, r2          /* 复制数据块直到源数据末尾地址[r2] */

       ble   copy_loop

 

       /* 初始化堆栈等    */

stack_setup:

       ldr   r0, _TEXT_BASE              /* 上面是128 KiB重定位的u-boot */

       sub   r0, r0, #CFG_MALLOC_LEN     /* 向下是内存分配空间 */

       sub   r0, r0, #CFG_GBL_DATA_SIZE /* 然后是bdinfo结构体地址空间  */

#ifdef CONFIG_USE_IRQ

       sub   r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ)

#endif

       sub   sp, r0, #12     /* abort-stack预留3个字 */

clear_bss:

       ldr   r0, _bss_start      /* 找到bss段起始地址 */

       ldr   r1, _bss_end        /*  bss段末尾地址   */

       mov   r2, #0x00000000     /* 清零 */

clbss_l:str r2, [r0]        /* bss段地址空间清零循环...  */

       add   r0, r0, #4

       cmp   r0, r1

       bne   clbss_l

       /* 跳转到start_armboot函数入口,_start_armboot字保存函数入口指针 */

       ldr   pc, _start_armboot

_start_armboot: .word start_armboot     //start_armboot函数在lib_arm/board.c中实现

/* 关键的初始化子程序 */

cpu_init_crit:

……  //初始化CACHE,关闭MMU等操作指令

       /* 初始化RAM时钟。

       * 因为内存时钟是依赖开发板硬件的,所以在board的相应目录下可以找到memsetup.S文件。

       */

       mov   ip, lr

       bl    memsetup        //memsetup子程序在board/smdk2410/memsetup.S中实现

       mov   lr, ip

       mov   pc, lr

 

2lib_arm/board.c

start_armbootU-Boot执行的第一个C语言函数,完成系统初始化工作,进入主循环,处理用户输入的命令。

 

 

void start_armboot (void)

{

       DECLARE_GLOBAL_DATA_PTR;

       ulong size;

       init_fnc_t **init_fnc_ptr;

       char *s;

       /* Pointer is writable since we allocated a register for it */

       gd = (gd_t*)(_armboot_start - CFG_MALLOC_LEN - sizeof(gd_t));

       /* compiler optimization barrier needed for GCC >= 3.4 */

       __asm__ __volatile__("": : :"memory");

       memset ((void*)gd, 0, sizeof (gd_t));

       gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));

       memset (gd->bd, 0, sizeof (bd_t));

       monitor_flash_len = _bss_start - _armboot_start;

       /* 顺序执行init_sequence数组中的初始化函数 */

       for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {

              if ((*init_fnc_ptr)() != 0) {

                      hang ();

              }

       }

       /*配置可用的Flash */

       size = flash_init ();

       display_flash_config (size);

       /* _armboot_start u-boot.lds链接脚本中定义 */

       mem_malloc_init (_armboot_start - CFG_MALLOC_LEN);

       /* 配置环境变量,重新定位 */

       env_relocate ();

       /* 从环境变量中获取IP地址 */

       gd->bd->bi_ip_addr = getenv_IPaddr ("ipaddr");

       /* 以太网接口MAC 地址 */

       ……

       devices_init ();      /* 获取列表中的设备 */

       jumptable_init ();

       console_init_r ();    /* 完整地初始化控制台设备 */

       enable_interrupts (); /* 使能例外处理 */

       /* 通过环境变量初始化 */

       if ((s = getenv ("loadaddr")) != NULL) {

               load_addr = simple_strtoul (s, NULL, 16);

       }

       /* main_loop()总是试图自动启动,循环不断执行 */

       for (;;) {

               main_loop ();      /* 主循环函数处理执行用户命令 -- common/main.c */

       }

       /* NOTREACHED - no way out of command loop except booting */

}

 

3init_sequence[]

init_sequence[]数组保存着基本的初始化函数指针。这些函数名称和实现的程序文件在下列注释中。

 

init_fnc_t *init_sequence[] = {

       cpu_init,             /* 基本的处理器相关配置 -- cpu/arm920t/cpu.c */

       board_init,           /* 基本的板级相关配置 -- board/smdk2410/smdk2410.c */

       interrupt_init,       /* 初始化例外处理 -- cpu/arm920t/s3c24x0/interrupt.c */

       env_init,             /* 初始化环境变量 -- common/cmd_flash.c */

       init_baudrate,        /* 初始化波特率设置 -- lib_arm/board.c */

       serial_init,          /* 串口通讯设置 -- cpu/arm920t/s3c24x0/serial.c */

       console_init_f,       /* 控制台初始化阶段1 -- common/console.c */

       display_banner,       /* 打印u-boot信息 -- lib_arm/board.c */

       dram_init,            /* 配置可用的RAM -- board/smdk2410/smdk2410.c */

       display_dram_config,  /* 显示RAM的配置大小 -- lib_arm/board.c */

       NULL,

};
 

6.3.4  U-Boot与内核的关系

U-Boot作为Bootloader,具备多种引导内核启动的方式。常用的gobootm命令可以直接引导内核映像启动。U-Boot与内核的关系主要是内核启动过程中参数的传递。

1go命令的实现

 

/* common/cmd_boot.c  */

int do_go (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])

{

       ulong addr, rc;

       int     rcode = 0;

       if (argc < 2) {

              printf ("Usage:\n%s\n", cmdtp->usage);

              return 1;

       }

       addr = simple_strtoul(argv[1], NULL, 16);

       printf ("## Starting application at 0x%08lX ...\n", addr);

       /*

        * pass address parameter as argv[0] (aka command name),

        * and all remaining args

        */

       rc = ((ulong (*)(int, char *[]))addr) (--argc, &argv[1]);

       if (rc != 0) rcode = 1;

 

       printf ("## Application terminated, rc = 0x%lX\n", rc);

       return rcode;

}

 

go命令调用do_go()函数,跳转到某个地址执行的。如果在这个地址准备好了自引导的内核映像,就可以启动了。尽管go命令可以带变参,实际使用时一般不用来传递参数。

2bootm命令的实现

 

/* common/cmd_bootm.c */

int do_bootm (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])

{

       ulong iflag;

       ulong addr;

       ulong data, len, checksum;

       ulong  *len_ptr;

       uint  unc_len = 0x400000;

       int   i, verify;

       char  *name, *s;

       int   (*appl)(int, char *[]);

       image_header_t *hdr = &header;

 

       s = getenv ("verify");

       verify = (s && (*s == 'n')) ? 0 : 1;

       if (argc < 2) {

              addr = load_addr;

       } else {

              addr = simple_strtoul(argv[1], NULL, 16);

       }

       SHOW_BOOT_PROGRESS (1);

       printf ("## Booting image at %08lx ...\n", addr);

       /* Copy header so we can blank CRC field for re-calculation */

       memmove (&header, (char *)addr, sizeof(image_header_t));

       if (ntohl(hdr->ih_magic) != IH_MAGIC)

       {

              puts ("Bad Magic Number\n");

              SHOW_BOOT_PROGRESS (-1);

              return 1;

       }

       SHOW_BOOT_PROGRESS (2);

       data = (ulong)&header;

       len  = sizeof(image_header_t);

 

       checksum = ntohl(hdr->ih_hcrc);

       hdr->ih_hcrc = 0;

 

       if(crc32 (0, (char *)data, len) != checksum) {

              puts ("Bad Header Checksum\n");

              SHOW_BOOT_PROGRESS (-2);

              return 1;

       }

       SHOW_BOOT_PROGRESS (3);

       /* for multi-file images we need the data part, too */

       print_image_hdr ((image_header_t *)addr);

       data = addr + sizeof(image_header_t);

       len  = ntohl(hdr->ih_size);

       if(verify) {

              puts ("   Verifying Checksum ... ");

              if(crc32 (0, (char *)data, len) != ntohl(hdr->ih_dcrc)) {

                     printf ("Bad Data CRC\n");

                     SHOW_BOOT_PROGRESS (-3);

                     return 1;

              }

              puts ("OK\n");

       }

       SHOW_BOOT_PROGRESS (4);

       len_ptr = (ulong *)data;

……

       switch (hdr->ih_os) {

       default:                /* handled by (original) Linux case */

       case IH_OS_LINUX:

             do_bootm_linux  (cmdtp, flag, argc, argv,

                         addr, len_ptr, verify);

             break;

       ……

}

 

bootm命令调用do_bootm函数。这个函数专门用来引导各种操作系统映像,可以支持引导LinuxvxWorksQNX等操作系统。引导Linux的时候,调用do_bootm_linux()函数。

3do_bootm_linux函数的实现

 

/* lib_arm/armlinux.c */

void do_bootm_linux (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[],

                   ulong addr, ulong *len_ptr, int verify)

{

       DECLARE_GLOBAL_DATA_PTR;

       ulong len = 0, checksum;

       ulong initrd_start, initrd_end;

       ulong data;

       void (*theKernel)(int zero, int arch, uint params);

       image_header_t *hdr = &header;

       bd_t *bd = gd->bd;

#ifdef CONFIG_CMDLINE_TAG

       char *commandline = getenv ("bootargs");

#endif

       theKernel = (void (*)(int, int, uint))ntohl(hdr->ih_ep);

       /* Check if there is an initrd image */

       if(argc >= 3) {

              SHOW_BOOT_PROGRESS (9);

              addr = simple_strtoul (argv[2], NULL, 16);

              printf ("## Loading Ramdisk Image at %08lx ...\n", addr);

              /* Copy header so we can blank CRC field for re-calculation */

              memcpy (&header, (char *) addr, sizeof (image_header_t));

              if (ntohl (hdr->ih_magic) != IH_MAGIC) {

                      printf ("Bad Magic Number\n");

                      SHOW_BOOT_PROGRESS (-10);

                      do_reset (cmdtp, flag, argc, argv);

              }

              data = (ulong) & header;

              len = sizeof (image_header_t);

              checksum = ntohl (hdr->ih_hcrc);

              hdr->ih_hcrc = 0;

              if(crc32 (0, (char *) data, len) != checksum) {

                     printf ("Bad Header Checksum\n");

                     SHOW_BOOT_PROGRESS (-11);

                     do_reset (cmdtp, flag, argc, argv);

              }

              SHOW_BOOT_PROGRESS (10);

              print_image_hdr (hdr);

              data = addr + sizeof (image_header_t);

              len = ntohl (hdr->ih_size);

              if(verify) {

                     ulong csum = 0;

                     printf ("   Verifying Checksum ... ");

                     csum = crc32 (0, (char *) data, len);

                     if (csum != ntohl (hdr->ih_dcrc)) {

                            printf ("Bad Data CRC\n");

                            SHOW_BOOT_PROGRESS (-12);

                            do_reset (cmdtp, flag, argc, argv);

                     }

                     printf ("OK\n");

              }

              SHOW_BOOT_PROGRESS (11);

              if ((hdr->ih_os != IH_OS_LINUX) ||

                     (hdr->ih_arch != IH_CPU_ARM) ||

                     (hdr->ih_type != IH_TYPE_RAMDISK)) {

                     printf ("No Linux ARM Ramdisk Image\n");

                     SHOW_BOOT_PROGRESS (-13);

                     do_reset (cmdtp, flag, argc, argv);

              }

              /* Now check if we have a multifile image */

       } else if ((hdr->ih_type == IH_TYPE_MULTI) && (len_ptr[1])) {

               ulong tail = ntohl (len_ptr[0]) % 4;

               int i;

               SHOW_BOOT_PROGRESS (13);

               /* skip kernel length and terminator */

               data = (ulong) (&len_ptr[2]);

               /* skip any additional image length fields */

               for (i = 1; len_ptr[i]; ++i)

                       data += 4;

              /* add kernel length, and align */

              data += ntohl (len_ptr[0]);

              if (tail) {

                       data += 4 - tail;

              }

              len = ntohl (len_ptr[1]);

       } else {

               /* no initrd image */

              SHOW_BOOT_PROGRESS (14);

              len = data = 0;

       }

       if (data) {

               initrd_start = data;

               initrd_end = initrd_start + len;

       } else {

               initrd_start = 0;

               initrd_end = 0;

       }

       SHOW_BOOT_PROGRESS (15);

       debug ("## Transferring control to Linux (at address %08lx) ...\n",

               (ulong) theKernel);

#if defined (CONFIG_SETUP_MEMORY_TAGS) || \

      defined (CONFIG_CMDLINE_TAG) || \

      defined (CONFIG_INITRD_TAG) || \

      defined (CONFIG_SERIAL_TAG) || \

      defined (CONFIG_REVISION_TAG) || \

      defined (CONFIG_LCD) || \

      defined (CONFIG_VFD)

      setup_start_tag (bd);

#ifdef CONFIG_SERIAL_TAG

      setup_serial_tag (¶ms);

#endif

#ifdef CONFIG_REVISION_TAG

      setup_revision_tag (¶ms);

#endif

#ifdef CONFIG_SETUP_MEMORY_TAGS

      setup_memory_tags (bd);

#endif

#ifdef CONFIG_CMDLINE_TAG

      setup_commandline_tag (bd, commandline);

#endif

#ifdef CONFIG_INITRD_TAG

      if (initrd_start && initrd_end)

               setup_initrd_tag (bd, initrd_start, initrd_end);

#endif

      setup_end_tag (bd);

#endif

      /* we assume that the kernel is in place */

      printf ("\nStarting kernel ...\n\n");

      cleanup_before_linux ();

 

      theKernel (0, bd->bi_arch_number, bd->bi_boot_params);

}

 

do_bootm_linux()函数是专门引导Linux映像的函数,它还可以处理ramdisk文件系统的映像。这里引导的内核映像和ramdisk映像,必须是U-Boot格式的。U-Boot格式的映像可以通过mkimage工具来转换,其中包含了U-Boot可以识别的符号。
阅读(3397) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~