实验环境参看本目录下的环境安装文章。
实验步驟基本参照这里,只是在一些细节的地方有点出入
先把代码贴出来
package org.myorg;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
public class WordCount {
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}
|
把官网上的步驟贴出来,在有出入的地方进行注释
在进行一下操作之前,确定你的hadoop dfs文件系统已成功创建,并启动hadoop,具体步驟见hadoop的Quick_start,或者这里
下面进入正题:
Usage
保证你的HADOOP_HOME指向安装主目录,HADOOP_VERSION正确,可以在~/.bash_rc中添加该环境变量。
Assuming HADOOP_HOME is the root of the installation and
HADOOP_VERSION is is the Hadoop version installed, compile
Using WordCount.java and create a jar:
$ mkdir wordcount_classes
$ javac -classpath ${HADOOP_HOME}/hadoop-${HADOOP_VERSION}-core.jar -d wordcount_classes WordCount.java
|
/*dfs的路径不是/usr/xxx/,用bin/hadoop fs -ls来确认用户路径*/
/*这里/usr/joe/wordcout.jar是需要创建的文件,我是直接创建在本地,而不是创建到dfs上(会报错)。我的想法是在本地创建了wordcount.jar之后,put到dfs上,但是这种方法在后面运行的时候出错*/
$ jar -cvf /usr/joe/wordcount.jar -C wordcount_classes/ .
|
创建输入文件:在本地建好你需要的文件之后,上传到dfs。使用 bin/hadoop fs -mkdir(-put)。
Assuming that:
/usr/joe/wordcount/input - input directory in HDFS
/usr/joe/wordcount/output - output directory in HDFS
Sample text-files as input:
$ bin/hadoop dfs -ls /usr/joe/wordcount/input/
/usr/joe/wordcount/input/file01
/usr/joe/wordcount/input/file02
$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01
Hello World Bye World
$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02
Hello Hadoop Goodbye Hadoop
确认需要的输入文件都存在之后,运行之
Run the application:
/*我把'/usr/joe/wordcount.jar替换成本地文件wordcount.jar才运行成功',按前述的操作来看,/usr/joe/应该是dfs下joe用户的主目录,但是我用本地wordcount.jar运行同样成功,疑问???*/
$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount /usr/joe/wordcount/input /usr/joe/wordcount/output
|
Output:
$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2
阅读(2672) | 评论(0) | 转发(0) |