/** 封装sensors.h中的数据结构 */
struct sensors_data_context_t {
struct sensors_data_device_t device;
int events_fd; // 数据接口的fd.用来接受数据和事件。
sensors_data_t sensors[MAX_NUM_SENSORS];
uint32_t pendingSensors;
};
/*
* The SENSORS Module
*/
static const struct sensor_t sSensorList[] = {
{ "AK8976A 3-axis Accelerometer",
"The Android Open Source Project",
1, SENSORS_HANDLE_BASE+ID_A,
SENSOR_TYPE_ACCELEROMETER, 2.8f, 1.0f/4032.0f, 3.0f, { } },
{ "AK8976A 3-axis Magnetic field sensor",
"The Android Open Source Project",
1, SENSORS_HANDLE_BASE+ID_M,
SENSOR_TYPE_MAGNETIC_FIELD, 2000.0f, 1.0f, 6.7f, { } },
{ "AK8976A Orientation sensor",
"The Android Open Source Project",
1, SENSORS_HANDLE_BASE+ID_O,
SENSOR_TYPE_ORIENTATION, 360.0f, 1.0f, 9.7f, { } },
{ "AK8976A Temperature sensor",
"The Android Open Source Project",
1, SENSORS_HANDLE_BASE+ID_T,
SENSOR_TYPE_TEMPERATURE, 80.0f, 1.0f, 0.0f, { } },
};
static int open_sensors(const struct hw_module_t* module, const char* name,
struct hw_device_t** device);
static uint32_t sensors__get_sensors_list(struct sensors_module_t* module,
struct sensor_t const** list)
{
*list = sSensorList;
return sizeof(sSensorList)/sizeof(sSensorList[0]);
}
static struct hw_module_methods_t sensors_module_methods = {
.open = open_sensors
};
/** 填充sensors_module_t 必须的 */
struct sensors_module_t HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.version_major = 1,
.version_minor = 0,
.id = SENSORS_HARDWARE_MODULE_ID,
.name = "AK8976A SENSORS Module",
.author = "The Android Open Source Project",
.methods = &sensors_module_methods,
},
.get_sensors_list = sensors__get_sensors_list
};
/*****************************************************************************/
/** 控制接口的设备文件路径 */
#define AKM_DEVICE_NAME "/dev/akm8976_aot"
// sensor IDs must be a power of two and
// must match values in SensorManager.java
#define EVENT_TYPE_ACCEL_X ABS_X
#define EVENT_TYPE_ACCEL_Y ABS_Z
#define EVENT_TYPE_ACCEL_Z ABS_Y
#define EVENT_TYPE_ACCEL_STATUS ABS_WHEEL
#define EVENT_TYPE_YAW ABS_RX
#define EVENT_TYPE_PITCH ABS_RY
#define EVENT_TYPE_ROLL ABS_RZ
#define EVENT_TYPE_ORIENT_STATUS ABS_RUDDER
#define EVENT_TYPE_MAGV_X ABS_HAT0X
#define EVENT_TYPE_MAGV_Y ABS_HAT0Y
#define EVENT_TYPE_MAGV_Z ABS_BRAKE
#define EVENT_TYPE_TEMPERATURE ABS_THROTTLE
#define EVENT_TYPE_STEP_COUNT ABS_GAS
// 720 LSG = 1G
#define LSG (720.0f)
// conversion of acceleration data to SI units (m/s^2)
#define CONVERT_A (GRAVITY_EARTH / LSG)
#define CONVERT_A_X (-CONVERT_A)
#define CONVERT_A_Y (CONVERT_A)
#define CONVERT_A_Z (-CONVERT_A)
// conversion of magnetic data to uT units
#define CONVERT_M (1.0f/16.0f)
#define CONVERT_M_X (-CONVERT_M)
#define CONVERT_M_Y (-CONVERT_M)
#define CONVERT_M_Z (CONVERT_M)
#define SENSOR_STATE_MASK (0x7FFF)
/*****************************************************************************/
/* open /dev/input dir, search the file "compass" of it. */
/** 打开数据接口 */
static int open_input(int mode)
{
/* scan all input drivers and look for "compass" */
int fd = -1;
const char *dirname = "/dev/input";
char devname[PATH_MAX];
char *filename;
DIR *dir;
struct dirent *de;
dir = opendir(dirname);
if(dir == NULL)
return -1;
strcpy(devname, dirname);
filename = devname + strlen(devname);
*filename++ = '/';
while((de = readdir(dir))) {
if(de->d_name[0] == '.' &&
(de->d_name[1] == '\0' ||
(de->d_name[1] == '.' && de->d_name[2] == '\0')))
continue;
strcpy(filename, de->d_name);
fd = open(devname, mode);
if (fd>=0) {
char name[80];
if (ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) {
name[0] = '\0';
}
if (!strcmp(name, "compass")) {
//LOGD("using %s (name=%s)", devname, name);
break;
}
close(fd);
fd = -1;
}
}
closedir(dir);
if (fd < 0) {
LOGE("Couldn't find or open 'compass' driver (%s)", strerror(errno));
}
return fd;
}
/* open akm device */
static int open_akm(struct sensors_control_context_t* dev)
{
if (dev->akmd_fd <= 0) {
dev->akmd_fd = open(AKM_DEVICE_NAME, O_RDONLY);
//LOGD("%s, fd=%d", __PRETTY_FUNCTION__, dev->akmd_fd);
LOGE_IF(dev->akmd_fd<0, "Couldn't open %s (%s)",
AKM_DEVICE_NAME, strerror(errno));
if (dev->akmd_fd >= 0) {
dev->active_sensors = 0;
}
}
return dev->akmd_fd;
}
/* close akm device */
static void close_akm(struct sensors_control_context_t* dev)
{
if (dev->akmd_fd > 0) {
//LOGD("%s, fd=%d", __PRETTY_FUNCTION__, dev->akmd_fd);
close(dev->akmd_fd);
dev->akmd_fd = -1;
}
}
/* 打开和关闭传感器 需要ioctl接口 */
static void enable_disable(int fd, uint32_t sensors, uint32_t mask)
{
if (fd<0) return;
short flags;
if (mask & SENSORS_ORIENTATION) {
flags = (sensors & SENSORS_ORIENTATION) ? 1 : 0;
if (ioctl(fd, ECS_IOCTL_APP_SET_MFLAG, &flags) < 0) {
LOGE("ECS_IOCTL_APP_SET_MFLAG error (%s)", strerror(errno));
}
}
if (mask & SENSORS_ACCELERATION) {
flags = (sensors & SENSORS_ACCELERATION) ? 1 : 0;
if (ioctl(fd, ECS_IOCTL_APP_SET_AFLAG, &flags) < 0) {
LOGE("ECS_IOCTL_APP_SET_AFLAG error (%s)", strerror(errno));
}
}
if (mask & SENSORS_TEMPERATURE) {
flags = (sensors & SENSORS_TEMPERATURE) ? 1 : 0;
if (ioctl(fd, ECS_IOCTL_APP_SET_TFLAG, &flags) < 0) {
LOGE("ECS_IOCTL_APP_SET_TFLAG error (%s)", strerror(errno));
}
}
if (mask & SENSORS_MAGNETIC_FIELD) {
flags = (sensors & SENSORS_MAGNETIC_FIELD) ? 1 : 0;
if (ioctl(fd, ECS_IOCTL_APP_SET_MVFLAG, &flags) < 0) {
LOGE("ECS_IOCTL_APP_SET_MVFLAG error (%s)", strerror(errno));
}
}
}
/* 查找该芯片上传感器的状态 */
static uint32_t read_sensors_state(int fd)
{
if (fd<0) return 0;
short flags;
uint32_t sensors = 0;
// read the actual value of all sensors
if (!ioctl(fd, ECS_IOCTL_APP_GET_MFLAG, &flags)) {
if (flags) sensors |= SENSORS_ORIENTATION;
else sensors &= ~SENSORS_ORIENTATION;
}
if (!ioctl(fd, ECS_IOCTL_APP_GET_AFLAG, &flags)) {
if (flags) sensors |= SENSORS_ACCELERATION;
else sensors &= ~SENSORS_ACCELERATION;
}
if (!ioctl(fd, ECS_IOCTL_APP_GET_TFLAG, &flags)) {
if (flags) sensors |= SENSORS_TEMPERATURE;
else sensors &= ~SENSORS_TEMPERATURE;
}
if (!ioctl(fd, ECS_IOCTL_APP_GET_MVFLAG, &flags)) {
if (flags) sensors |= SENSORS_MAGNETIC_FIELD;
else sensors &= ~SENSORS_MAGNETIC_FIELD;
}
return sensors;
}
/*****************************************************************************/
static native_handle_t* control__open_data_source(struct sensors_control_context_t *dev)
{
native_handle_t* handle;
int fd = open_input(O_RDONLY);
if (fd < 0) {
return NULL;
}
handle = native_handle_create(1, 0);
handle->data[0] = fd;
return handle;
}
/** 激活或关闭一个传感器。 关闭也只是不读取该传感器事件,并不真正关闭设备 */
static int control__activate(struct sensors_control_context_t *dev,
int handle, int enabled)
{
if ((handle<SENSORS_HANDLE_BASE) ||
(handle>=SENSORS_HANDLE_BASE+MAX_NUM_SENSORS)) {
return -1;
}
uint32_t mask = (1<<handle);
uint32_t sensors = enabled ? mask : 0;
uint32_t active = dev->active_sensors;
uint32_t new_sensors = (active & ~mask) | (sensors & mask);
uint32_t changed = active ^ new_sensors;
if (changed) {
int fd = open_akm(dev);
if (fd >= 0) {
if (!active && new_sensors) {
// force all sensors to be updated
changed = SUPPORTED_SENSORS;
}
enable_disable(fd, new_sensors, changed);
LOGD("sensors=%08x, real=%08x",
new_sensors, read_sensors_state(fd));
if (active && !new_sensors) {
// close the driver
close_akm(dev);
}
dev->active_sensors = active = new_sensors;
} else {
active = -1;
}
}
return 0;
}
static int control__set_delay(struct sensors_control_context_t *dev, int32_t ms)
{
#ifdef ECS_IOCTL_APP_SET_DELAY
if (dev->akmd_fd <= 0) {
return -1;
}
short delay = ms;
if (!ioctl(dev->akmd_fd, ECS_IOCTL_APP_SET_DELAY, &delay)) {
return -errno;
}
return 0;
#else
return -1;
#endif
}
static int control__wake(struct sensors_control_context_t *dev)
{
int err = 0;
int fd = open_input(O_WRONLY);
if (fd > 0) {
struct input_event event[1];
event[0].type = EV_SYN;
event[0].code = SYN_CONFIG;
event[0].value = 0;
err = write(fd, event, sizeof(event));
LOGD_IF(err<0, "control__wake, err=%d (%s)", errno, strerror(errno));
close(fd);
}
return err;
}
/*****************************************************************************/
static int data__data_open(struct sensors_data_context_t *dev, native_handle_t* handle)
{
int i;
memset(&dev->sensors, 0, sizeof(dev->sensors));
for (i=0 ; i<MAX_NUM_SENSORS ; i++) {
// by default all sensors have high accuracy
// (we do this because we don't get an update if the value doesn't
// change).
dev->sensors[i].vector.status = SENSOR_STATUS_ACCURACY_HIGH;
}
dev->pendingSensors = 0;
dev->events_fd = dup(handle->data[0]);
//LOGD("data__data_open: fd = %d", handle->data[0]);
native_handle_close(handle);
native_handle_delete(handle);
return 0;
}
static int data__data_close(struct sensors_data_context_t *dev)
{
if (dev->events_fd > 0) {
//LOGD("(data close) about to close fd=%d", dev->events_fd);
close(dev->events_fd);
dev->events_fd = -1;
}
return 0;
}
static int pick_sensor(struct sensors_data_context_t *dev,
sensors_data_t* values)
{
uint32_t mask = SUPPORTED_SENSORS;
while (mask) {
uint32_t i = 31 - __builtin_clz(mask);
mask &= ~(1<<i);
if (dev->pendingSensors & (1<<i)) {
dev->pendingSensors &= ~(1<<i);
*values = dev->sensors[i];
values->sensor = (1<<i);
LOGD_IF(0, "%d [%f, %f, %f]", (1<<i),
values->vector.x,
values->vector.y,
values->vector.z);
return i;
}
}
LOGE("No sensor to return!!! pendingSensors=%08x", dev->pendingSensors);
// we may end-up in a busy loop, slow things down, just in case.
usleep(100000);
return -1;
}
static int data__poll(struct sensors_data_context_t *dev, sensors_data_t* values)
{
int fd = dev->events_fd;
if (fd < 0) {
LOGE("invalid file descriptor, fd=%d", fd);
return -1;
}
// there are pending sensors, returns them now...
if (dev->pendingSensors) {
return pick_sensor(dev, values);
}
// wait until we get a complete event for an enabled sensor
uint32_t new_sensors = 0;
while (1) {
/* read the next event */
struct input_event event;
int nread = read(fd, &event, sizeof(event));
if (nread == sizeof(event)) {
uint32_t v;
if (event.type == EV_ABS) {
//LOGD("type: %d code: %d value: %-5d time: %ds",
// event.type, event.code, event.value,
// (int)event.time.tv_sec);
switch (event.code) {
case EVENT_TYPE_ACCEL_X:
new_sensors |= SENSORS_ACCELERATION;
dev->sensors[ID_A].acceleration.x = event.value * CONVERT_A_X;
break;
case EVENT_TYPE_ACCEL_Y:
new_sensors |= SENSORS_ACCELERATION;
dev->sensors[ID_A].acceleration.y = event.value * CONVERT_A_Y;
break;
case EVENT_TYPE_ACCEL_Z:
new_sensors |= SENSORS_ACCELERATION;
dev->sensors[ID_A].acceleration.z = event.value * CONVERT_A_Z;
break;
case EVENT_TYPE_MAGV_X:
new_sensors |= SENSORS_MAGNETIC_FIELD;
dev->sensors[ID_M].magnetic.x = event.value * CONVERT_M_X;
break;
case EVENT_TYPE_MAGV_Y:
new_sensors |= SENSORS_MAGNETIC_FIELD;
dev->sensors[ID_M].magnetic.y = event.value * CONVERT_M_Y;
break;
case EVENT_TYPE_MAGV_Z:
new_sensors |= SENSORS_MAGNETIC_FIELD;
dev->sensors[ID_M].magnetic.z = event.value * CONVERT_M_Z;
break;
case EVENT_TYPE_YAW:
new_sensors |= SENSORS_ORIENTATION;
dev->sensors[ID_O].orientation.azimuth = event.value;
break;
case EVENT_TYPE_PITCH:
new_sensors |= SENSORS_ORIENTATION;
dev->sensors[ID_O].orientation.pitch = event.value;
break;
case EVENT_TYPE_ROLL:
new_sensors |= SENSORS_ORIENTATION;
dev->sensors[ID_O].orientation.roll = -event.value;
break;
case EVENT_TYPE_TEMPERATURE:
new_sensors |= SENSORS_TEMPERATURE;
dev->sensors[ID_T].temperature = event.value;
break;
case EVENT_TYPE_STEP_COUNT:
// step count (only reported in MODE_FFD)
// we do nothing with it for now.
break;
case EVENT_TYPE_ACCEL_STATUS:
// accuracy of the calibration (never returned!)
//LOGD("G-Sensor status %d", event.value);
break;
case EVENT_TYPE_ORIENT_STATUS:
// accuracy of the calibration
v = (uint32_t)(event.value & SENSOR_STATE_MASK);
LOGD_IF(dev->sensors[ID_O].orientation.status != (uint8_t)v,
"M-Sensor status %d", v);
dev->sensors[ID_O].orientation.status = (uint8_t)v;
break;
}
} else if (event.type == EV_SYN) {
if (event.code == SYN_CONFIG) {
// we use SYN_CONFIG to signal that we need to exit the
// main loop.
//LOGD("got empty message: value=%d", event.value);
return 0x7FFFFFFF;
}
if (new_sensors) {
dev->pendingSensors = new_sensors;
int64_t t = event.time.tv_sec*1000000000LL +
event.time.tv_usec*1000;
while (new_sensors) {
uint32_t i = 31 - __builtin_clz(new_sensors);
new_sensors &= ~(1<<i);
dev->sensors[i].time = t;
}
return pick_sensor(dev, values);
}
}
}
}
}
/*****************************************************************************/
static int control__close(struct hw_device_t *dev)
{
struct sensors_control_context_t* ctx = (struct sensors_control_context_t*)dev;
if (ctx) {
if (ctx->akmd_fd > 0)
close(ctx->akmd_fd);
free(ctx);
}
return 0;
}
static int data__close(struct hw_device_t *dev)
{
struct sensors_data_context_t* ctx = (struct sensors_data_context_t*)dev;
if (ctx) {
if (ctx->events_fd > 0) {
//LOGD("(device close) about to close fd=%d", ctx->events_fd);
close(ctx->events_fd);
}
free(ctx);
}
return 0;
}
/** Open a new instance of a sensor device using name */
static int open_sensors(const struct hw_module_t* module, const char* name,
struct hw_device_t** device)
{
int status = -EINVAL;
if (!strcmp(name, SENSORS_HARDWARE_CONTROL)) {
struct sensors_control_context_t *dev;
dev = malloc(sizeof(*dev));
memset(dev, 0, sizeof(*dev));
dev->akmd_fd = -1;
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = 0;
dev->device.common.module = module;
dev->device.common.close = control__close;
dev->device.open_data_source = control__open_data_source;
dev->device.activate = control__activate;
dev->device.set_delay= control__set_delay;
dev->device.wake = control__wake;
*device = &dev->device.common;
} else if (!strcmp(name, SENSORS_HARDWARE_DATA)) {
struct sensors_data_context_t *dev;
dev = malloc(sizeof(*dev));
memset(dev