ckpt转换成SavedModel
convert_ckpt_to_savermodel.py
-
import tensorflow as tf
-
import sys
-
-
trained_checkpoint_prefix = sys.argv[1]
-
export_dir = sys.argv[2]
-
graph = tf.Graph()
-
config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)
-
with tf.compat.v1.Session(graph=graph, config=config) as sess:
-
# Restore from checkpoint
-
loader = tf.compat.v1.train.import_meta_graph(trained_checkpoint_prefix + '.meta')
-
loader.restore(sess, trained_checkpoint_prefix)
-
-
# Export checkpoint to SavedModel
-
builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(export_dir)
-
builder.add_meta_graph_and_variables(sess, [tf.saved_model.TRAINING, tf.saved_model.SERVING], strip_default_attrs=True)
-
builder.save()
假设已经生成了ckpt模型checkpoint hello_model.data-00000-of-00001 hello_model.index hello_model.meta
python ./convert_ckpt_to_savermodel.py hello_model ./save
会在save目录下生成
save
├── saved_model.pb
└── variables
├── variables.data-00000-of-00001
└── variables.index
[tf.saved_model.TRAINING, tf.saved_model.SERVING] 可根据需要修改此列表,比如如果模型中只有SERVING那么要改成
[tf.saved_model.SERVING] ,否则会提示 TRAINING不存在的错误。
作者:帅得不敢出门
阅读(2161) | 评论(0) | 转发(0) |