题目:输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。要求不能创建任何新的结点,只调整指针的指向。
比如将二元查找树
10
/ \
6 14
/ \ / \
4 8 12 16
转换成双向链表
4=6=8=10=12=14=16。
分析:本题是微软的面试题。很多与树相关的题目都是用递归的思路来解决,本题也不例外。下面我们用两种不同的递归思路来分析。
思路一:当我们到达某一结点准备调整以该结点为根结点的子树时,先调整其左子树将左
子树转换成一个排好序的左子链表,再调整其右子树转换右子链表。最近链接左子链表的最右结点(左子树的最大结点)、当前结点和右子链表的最左结点(右子树
的最小结点)。从树的根结点开始递归调整所有结点。
思路二:我们可以中序遍历整棵树。按照这个方式遍历树,比较小的结点先访问。如果我们每访问一个结点,假设之前访问过的结点已经调整成一个排序双向链表,我们再把调整当前结点的指针将其链接到链表的末尾。当所有结点都访问过之后,整棵树也就转换成一个排序双向链表了。
参考代码:
首先我们定义二元查找树结点的数据结构如下:
struct BSTreeNode // a node in the binary search tree
{
int m_nValue; // value of node
BSTreeNode *m_pLeft; // left child of node
BSTreeNode *m_pRight; // right child of node
};
思路一对应的代码:
///////////////////////////////////////////////////////////////////////
// Covert a sub binary-search-tree into a sorted double-linked list
// Input: pNode - the head of the sub tree
// asRight - whether pNode is the right child of its parent
// Output: if asRight is true, return the least node in the sub-tree
// else return the greatest node in the sub-tree
///////////////////////////////////////////////////////////////////////
BSTreeNode* ConvertNode(BSTreeNode* pNode, bool asRight)
{
if(!pNode)
return NULL;
BSTreeNode *pLeft = NULL;
BSTreeNode *pRight = NULL;
// Convert the left sub-tree
if(pNode->m_pLeft)
pLeft = ConvertNode(pNode->m_pLeft, false);
// Connect the greatest node in the left sub-tree to the current node
if(pLeft)
{
pLeft->m_pRight = pNode;
pNode->m_pLeft = pLeft;
}
// Convert the right sub-tree
if(pNode->m_pRight)
pRight = ConvertNode(pNode->m_pRight, true);
// Connect the least node in the right sub-tree to the current node
if(pRight)
{
pNode->m_pRight = pRight;
pRight->m_pLeft = pNode;
}
BSTreeNode *pTemp = pNode;
// If the current node is the right child of its parent,
// return the least node in the tree whose root is the current node
if(asRight)
{
while(pTemp->m_pLeft)
pTemp = pTemp->m_pLeft;
}
// If the current node is the left child of its parent,
// return the greatest node in the tree whose root is the current node
else
{
while(pTemp->m_pRight)
pTemp = pTemp->m_pRight;
}
return pTemp;
}
///////////////////////////////////////////////////////////////////////
// Covert a binary search tree into a sorted double-linked list
// Input: the head of tree
// Output: the head of sorted double-linked list
///////////////////////////////////////////////////////////////////////
BSTreeNode* Convert(BSTreeNode* pHeadOfTree)
{
// As we want to return the head of the sorted double-linked list,
// we set the second parameter to be true
return ConvertNode(pHeadOfTree, true);
}
思路二对应的代码:
///////////////////////////////////////////////////////////////////////
// Covert a sub binary-search-tree into a sorted double-linked list
// Input: pNode - the head of the sub tree
// pLastNodeInList - the tail of the double-linked list
///////////////////////////////////////////////////////////////////////
void ConvertNode(BSTreeNode* pNode, BSTreeNode*& pLastNodeInList)
{
if(pNode == NULL)
return;
BSTreeNode *pCurrent = pNode;
// Convert the left sub-tree
if (pCurrent->m_pLeft != NULL)
ConvertNode(pCurrent->m_pLeft, pLastNodeInList);
// Put the current node into the double-linked list
pCurrent->m_pLeft = pLastNodeInList;
if(pLastNodeInList != NULL)
pLastNodeInList->m_pRight = pCurrent;
pLastNodeInList = pCurrent;
// Convert the right sub-tree
if (pCurrent->m_pRight != NULL)
ConvertNode(pCurrent->m_pRight, pLastNodeInList);
}
///////////////////////////////////////////////////////////////////////
// Covert a binary search tree into a sorted double-linked list
// Input: pHeadOfTree - the head of tree
// Output: the head of sorted double-linked list
///////////////////////////////////////////////////////////////////////
BSTreeNode* Convert_Solution1(BSTreeNode* pHeadOfTree)
{
BSTreeNode *pLastNodeInList = NULL;
ConvertNode(pHeadOfTree, pLastNodeInList);
// Get the head of the double-linked list
BSTreeNode *pHeadOfList = pLastNodeInList;
while(pHeadOfList && pHeadOfList->m_pLeft)
pHeadOfList = pHeadOfList->m_pLeft;
return pHeadOfList;
}
阅读(548) | 评论(0) | 转发(0) |