Chinaunix首页 | 论坛 | 博客
  • 博客访问: 15357662
  • 博文数量: 2005
  • 博客积分: 11986
  • 博客等级: 上将
  • 技术积分: 22535
  • 用 户 组: 普通用户
  • 注册时间: 2007-05-17 13:56
文章分类

全部博文(2005)

文章存档

2014年(2)

2013年(2)

2012年(16)

2011年(66)

2010年(368)

2009年(743)

2008年(491)

2007年(317)

分类: 嵌入式

2009-07-31 11:49:37

位于内核sound/i2c/l3/uda1341.c
文件:基于S3C2410A和UDA1341TS的嵌入式音频系统设计.doc.tar.bz2
大小:51KB
下载:下载






文件:实验七 UClinux下的WAV试验.doc.tar.bz2
大小:248KB
下载:下载






/*
 * Philips UDA1341 mixer device driver
 * Copyright (c) 2002 Tomas Kasparek
 *
 * Portions are Copyright (C) 2000 Lernout & Hauspie Speech Products, N.V.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License.
 *
 * History:
 *
 * 2002-03-13   Tomas Kasparek  initial release - based on uda1341.c from OSS
 * 2002-03-28   Tomas Kasparek  basic mixer is working (volume, bass, treble)
 * 2002-03-30   Tomas Kasparek  proc filesystem support, complete mixer and DSP
 *                              features support
 * 2002-04-12    Tomas Kasparek    proc interface update, code cleanup
 * 2002-05-12   Tomas Kasparek  another code cleanup
 */

#include
#include
#include
#include
#include
#include

#include

#include
#include
#include
#include

#include

#include

/* {{{ HW regs definition */

#define STAT0                   0x00
#define STAT1            0x80
#define STAT_MASK               0x80

#define DATA0_0            0x00
#define DATA0_1            0x40
#define DATA0_2            0x80
#define DATA_MASK               0xc0

#define IS_DATA0(x)     ((x) >= data0_0 && (x) <= data0_2)
#define IS_DATA1(x)     ((x) == data1)
#define IS_STATUS(x)    ((x) == stat0 || (x) == stat1)
#define IS_EXTEND(x)   ((x) >= ext0 && (x) <= ext6)

/* }}} */


static const char *peak_names[] = {
    "before",
    "after",
};

static const char *filter_names[] = {
    "flat",
    "min",
    "min",
    "max",
};

static const char *mixer_names[] = {
    "double differential",
    "input channel 1 (line in)",
    "input channel 2 (microphone)",
    "digital mixer",
};

static const char *deemp_names[] = {
    "none",
    "32 kHz",
    "44.1 kHz",
    "48 kHz",       
};

enum uda1341_regs_names {
    stat0,
    stat1,
    data0_0,
    data0_1,
    data0_2,
    data1,
    ext0,
    ext1,
    ext2,
    empty,
    ext4,
    ext5,
    ext6,
    uda1341_reg_last,
};

static const char *uda1341_reg_names[] = {
    "stat 0 ",
    "stat 1 ",
    "data 00",
    "data 01",
    "data 02",
    "data 1 ",
    "ext 0",
    "ext 1",
    "ext 2",
    "empty",
    "ext 4",
    "ext 5",
    "ext 6",
};

static const int uda1341_enum_items[] = {
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    2, //peak - before/after
    4, //deemp - none/32/44.1/48
    0,
    4, //filter - flat/min/min/max
    0, 0, 0,
    4, //mixer - differ/line/mic/mixer
    0, 0, 0, 0, 0,
};

static const char ** uda1341_enum_names[] = {
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
    peak_names, //peak - before/after
    deemp_names, //deemp - none/32/44.1/48
    NULL,
    filter_names, //filter - flat/min/min/max
    NULL, NULL, NULL,
    mixer_names, //mixer - differ/line/mic/mixer
    NULL, NULL, NULL, NULL, NULL,
};

typedef int uda1341_cfg[CMD_LAST];

struct uda1341 {
    int (*write) (struct l3_client *uda1341, unsigned short reg, unsigned short val);
    int (*read) (struct l3_client *uda1341, unsigned short reg);       
    unsigned char regs[uda1341_reg_last];
    int active;
    spinlock_t reg_lock;
    struct snd_card *card;
    uda1341_cfg cfg;
#ifdef CONFIG_PM
    unsigned char suspend_regs[uda1341_reg_last];
    uda1341_cfg suspend_cfg;
#endif
};

/* transfer 8bit integer into string with binary representation */
static void int2str_bin8(uint8_t val, char *buf)
{
    const int size = sizeof(val) * 8;
    int i;

    for (i= 0; i < size; i++){
        *(buf++) = (val >> (size - 1)) ? '1' : '0';
        val <<= 1;
    }
    *buf = '\0'; //end the string with zero
}

/* {{{ HW manipulation routines */

static int snd_uda1341_codec_write(struct l3_client *clnt, unsigned short reg, unsigned short val)
{
    struct uda1341 *uda = clnt->driver_data;
    unsigned char buf[2] = { 0xc0, 0xe0 }; // for EXT addressing
    int err = 0;

    uda->regs[reg] = val;

    if (uda->active) {
        if (IS_DATA0(reg)) {
            err = l3_write(clnt, UDA1341_DATA0, (const unsigned char *)&val, 1);
        } else if (IS_DATA1(reg)) {
            err = l3_write(clnt, UDA1341_DATA1, (const unsigned char *)&val, 1);
        } else if (IS_STATUS(reg)) {
            err = l3_write(clnt, UDA1341_STATUS, (const unsigned char *)&val, 1);
        } else if (IS_EXTEND(reg)) {
            buf[0] |= (reg - ext0) & 0x7;   //EXT address
            buf[1] |= val;                  //EXT data
            err = l3_write(clnt, UDA1341_DATA0, (const unsigned char *)buf, 2);
        }
    } else
        printk(KERN_ERR "UDA1341 codec not active!\n");
    return err;
}

static int snd_uda1341_codec_read(struct l3_client *clnt, unsigned short reg)
{
    unsigned char val;
    int err;

    err = l3_read(clnt, reg, &val, 1);
    if (err == 1)
        // use just 6bits - the rest is address of the reg
        return val & 63;
    return err < 0 ? err : -EIO;
}

static inline int snd_uda1341_valid_reg(struct l3_client *clnt, unsigned short reg)
{
    return reg < uda1341_reg_last;
}

static int snd_uda1341_update_bits(struct l3_client *clnt, unsigned short reg,
                   unsigned short mask, unsigned short shift,
                   unsigned short value, int flush)
{
    int change;
    unsigned short old, new;
    struct uda1341 *uda = clnt->driver_data;

#if 0
    printk(KERN_DEBUG "update_bits: reg: %s mask: %d shift: %d val: %d\n",
           uda1341_reg_names[reg], mask, shift, value);
#endif
       
    if (!snd_uda1341_valid_reg(clnt, reg))
        return -EINVAL;
    spin_lock(&uda->reg_lock);
    old = uda->regs[reg];
    new = (old & ~(mask << shift)) | (value << shift);
    change = old != new;
    if (change) {
        if (flush) uda->write(clnt, reg, new);
        uda->regs[reg] = new;
    }
    spin_unlock(&uda->reg_lock);
    return change;
}

static int snd_uda1341_cfg_write(struct l3_client *clnt, unsigned short what,
                 unsigned short value, int flush)
{
    struct uda1341 *uda = clnt->driver_data;
    int ret = 0;
#ifdef CONFIG_PM
    int reg;
#endif

#if 0
    printk(KERN_DEBUG "cfg_write what: %d value: %d\n", what, value);
#endif

    uda->cfg[what] = value;
       
    switch(what) {
    case CMD_RESET:
        ret = snd_uda1341_update_bits(clnt, data0_2, 1, 2, 1, flush);    // MUTE
        ret = snd_uda1341_update_bits(clnt, stat0, 1, 6, 1, flush);    // RESET
        ret = snd_uda1341_update_bits(clnt, stat0, 1, 6, 0, flush);    // RESTORE
        uda->cfg[CMD_RESET]=0;
        break;
    case CMD_FS:
        ret = snd_uda1341_update_bits(clnt, stat0, 3, 4, value, flush);
        break;
    case CMD_FORMAT:
        ret = snd_uda1341_update_bits(clnt, stat0, 7, 1, value, flush);
        break;
    case CMD_OGAIN:
        ret = snd_uda1341_update_bits(clnt, stat1, 1, 6, value, flush);
        break;
    case CMD_IGAIN:
        ret = snd_uda1341_update_bits(clnt, stat1, 1, 5, value, flush);
        break;
    case CMD_DAC:
        ret = snd_uda1341_update_bits(clnt, stat1, 1, 0, value, flush);
        break;
    case CMD_ADC:
        ret = snd_uda1341_update_bits(clnt, stat1, 1, 1, value, flush);
        break;
    case CMD_VOLUME:
        ret = snd_uda1341_update_bits(clnt, data0_0, 63, 0, value, flush);
        break;
    case CMD_BASS:
        ret = snd_uda1341_update_bits(clnt, data0_1, 15, 2, value, flush);
        break;
    case CMD_TREBBLE:
        ret = snd_uda1341_update_bits(clnt, data0_1, 3, 0, value, flush);
        break;
    case CMD_PEAK:
        ret = snd_uda1341_update_bits(clnt, data0_2, 1, 5, value, flush);
        break;
    case CMD_DEEMP:
        ret = snd_uda1341_update_bits(clnt, data0_2, 3, 3, value, flush);
        break;
    case CMD_MUTE:
        ret = snd_uda1341_update_bits(clnt, data0_2, 1, 2, value, flush);
        break;
    case CMD_FILTER:
        ret = snd_uda1341_update_bits(clnt, data0_2, 3, 0, value, flush);
        break;
    case CMD_CH1:
        ret = snd_uda1341_update_bits(clnt, ext0, 31, 0, value, flush);
        break;
    case CMD_CH2:
        ret = snd_uda1341_update_bits(clnt, ext1, 31, 0, value, flush);
        break;
    case CMD_MIC:
        ret = snd_uda1341_update_bits(clnt, ext2, 7, 2, value, flush);
        break;
    case CMD_MIXER:
        ret = snd_uda1341_update_bits(clnt, ext2, 3, 0, value, flush);
        break;
    case CMD_AGC:
        ret = snd_uda1341_update_bits(clnt, ext4, 1, 4, value, flush);
        break;
    case CMD_IG:
        ret = snd_uda1341_update_bits(clnt, ext4, 3, 0, value & 0x3, flush);
        ret = snd_uda1341_update_bits(clnt, ext5, 31, 0, value >> 2, flush);
        break;
    case CMD_AGC_TIME:
        ret = snd_uda1341_update_bits(clnt, ext6, 7, 2, value, flush);
        break;
    case CMD_AGC_LEVEL:
        ret = snd_uda1341_update_bits(clnt, ext6, 3, 0, value, flush);
        break;
#ifdef CONFIG_PM       
    case CMD_SUSPEND:
        for (reg = stat0; reg < uda1341_reg_last; reg++)
            uda->suspend_regs[reg] = uda->regs[reg];
        for (reg = 0; reg < CMD_LAST; reg++)
            uda->suspend_cfg[reg] = uda->cfg[reg];
        break;
    case CMD_RESUME:
        for (reg = stat0; reg < uda1341_reg_last; reg++)
            snd_uda1341_codec_write(clnt, reg, uda->suspend_regs[reg]);
        for (reg = 0; reg < CMD_LAST; reg++)
            uda->cfg[reg] = uda->suspend_cfg[reg];
        break;
#endif
    default:
        ret = -EINVAL;
        break;
    }
               
    if (!uda->active)
        printk(KERN_ERR "UDA1341 codec not active!\n");               
    return ret;
}

/* }}} */

/* {{{ Proc interface */
#ifdef CONFIG_PROC_FS

static const char *format_names[] = {
    "I2S-bus",
    "LSB 16bits",
    "LSB 18bits",
    "LSB 20bits",
    "MSB",
    "in LSB 16bits/out MSB",
    "in LSB 18bits/out MSB",
    "in LSB 20bits/out MSB",       
};

static const char *fs_names[] = {
    "512*fs",
    "384*fs",
    "256*fs",
    "Unused - bad value!",
};

static const char* bass_values[][16] = {
    {"0 dB", "0 dB", "0 dB", "0 dB", "0 dB", "0 dB", "0 dB", "0 dB", "0 dB", "0 dB", "0 dB",
     "0 dB", "0 dB", "0 dB", "0 dB", "undefined", }, //flat
    {"0 dB", "2 dB", "4 dB", "6 dB", "8 dB", "10 dB", "12 dB", "14 dB", "16 dB", "18 dB", "18 dB",
     "18 dB", "18 dB", "18 dB", "18 dB", "undefined",}, // min
    {"0 dB", "2 dB", "4 dB", "6 dB", "8 dB", "10 dB", "12 dB", "14 dB", "16 dB", "18 dB", "18 dB",
     "18 dB", "18 dB", "18 dB", "18 dB", "undefined",}, // min
    {"0 dB", "2 dB", "4 dB", "6 dB", "8 dB", "10 dB", "12 dB", "14 dB", "16 dB", "18 dB", "20 dB",
     "22 dB", "24 dB", "24 dB", "24 dB", "undefined",}, // max
};

static const char *mic_sens_value[] = {
    "-3 dB", "0 dB", "3 dB", "9 dB", "15 dB", "21 dB", "27 dB", "not used",
};

static const unsigned short AGC_atime[] = {
    11, 16, 11, 16, 21, 11, 16, 21,
};

static const unsigned short AGC_dtime[] = {
    100, 100, 200, 200, 200, 400, 400, 400,
};

static const char *AGC_level[] = {
    "-9.0", "-11.5", "-15.0", "-17.5",
};

static const char *ig_small_value[] = {
    "-3.0", "-2.5", "-2.0", "-1.5", "-1.0", "-0.5",
};

/*
 * this was computed as peak_value[i] = pow((63-i)*1.42,1.013)
 *
 * UDA1341 datasheet on page 21: Peak value (dB) = (Peak level - 63.5)*5*log2
 * There is an table with these values [level]=value: [3]=-90.31, [7]=-84.29
 * [61]=-2.78, [62] = -1.48, [63] = 0.0
 * I tried to compute it, but using but even using logarithm with base either 10 or 2
 * i was'n able to get values in the table from the formula. So I constructed another
 * formula (see above) to interpolate the values as good as possible. If there is some
 * mistake, please contact me on tomas.kasparek@seznam.cz. Thanks.
 * UDA1341TS datasheet is available at:
 *  
 */
static const char *peak_value[] = {
    "-INF dB", "N.A.", "N.A", "90.31 dB", "N.A.", "N.A.", "N.A.", "-84.29 dB",
    "-82.65 dB", "-81.13 dB", "-79.61 dB", "-78.09 dB", "-76.57 dB", "-75.05 dB", "-73.53 dB",
    "-72.01 dB", "-70.49 dB", "-68.97 dB", "-67.45 dB", "-65.93 dB", "-64.41 dB", "-62.90 dB",
    "-61.38 dB", "-59.86 dB", "-58.35 dB", "-56.83 dB", "-55.32 dB", "-53.80 dB", "-52.29 dB",
    "-50.78 dB", "-49.26 dB", "-47.75 dB", "-46.24 dB", "-44.73 dB", "-43.22 dB", "-41.71 dB",
    "-40.20 dB", "-38.69 dB", "-37.19 dB", "-35.68 dB", "-34.17 dB", "-32.67 dB", "-31.17 dB",
    "-29.66 dB", "-28.16 dB", "-26.66 dB", "-25.16 dB", "-23.66 dB", "-22.16 dB", "-20.67 dB",
    "-19.17 dB", "-17.68 dB", "-16.19 dB", "-14.70 dB", "-13.21 dB", "-11.72 dB", "-10.24 dB",
    "-8.76 dB", "-7.28 dB", "-5.81 dB", "-4.34 dB", "-2.88 dB", "-1.43 dB", "0.00 dB",
};

static void snd_uda1341_proc_read(struct snd_info_entry *entry,
                  struct snd_info_buffer *buffer)
{
    struct l3_client *clnt = entry->private_data;
    struct uda1341 *uda = clnt->driver_data;
    int peak;

    peak = snd_uda1341_codec_read(clnt, UDA1341_DATA1);
    if (peak < 0)
        peak = 0;
   
    snd_iprintf(buffer, "%s\n\n", uda->card->longname);

    // for information about computed values see UDA1341TS datasheet pages 15 - 21
    snd_iprintf(buffer, "DAC power           : %s\n", uda->cfg[CMD_DAC] ? "on" : "off");
    snd_iprintf(buffer, "ADC power           : %s\n", uda->cfg[CMD_ADC] ? "on" : "off");
     snd_iprintf(buffer, "Clock frequency     : %s\n", fs_names[uda->cfg[CMD_FS]]);
    snd_iprintf(buffer, "Data format         : %s\n\n", format_names[uda->cfg[CMD_FORMAT]]);

    snd_iprintf(buffer, "Filter mode         : %s\n", filter_names[uda->cfg[CMD_FILTER]]);
    snd_iprintf(buffer, "Mixer mode          : %s\n", mixer_names[uda->cfg[CMD_MIXER]]);
    snd_iprintf(buffer, "De-emphasis         : %s\n", deemp_names[uda->cfg[CMD_DEEMP]]);   
    snd_iprintf(buffer, "Peak detection pos. : %s\n", uda->cfg[CMD_PEAK] ? "after" : "before");
    snd_iprintf(buffer, "Peak value          : %s\n\n", peak_value[peak]);       
   
    snd_iprintf(buffer, "Automatic Gain Ctrl : %s\n", uda->cfg[CMD_AGC] ? "on" : "off");
    snd_iprintf(buffer, "AGC attack time     : %d ms\n", AGC_atime[uda->cfg[CMD_AGC_TIME]]);
    snd_iprintf(buffer, "AGC decay time      : %d ms\n", AGC_dtime[uda->cfg[CMD_AGC_TIME]]);
    snd_iprintf(buffer, "AGC output level    : %s dB\n\n", AGC_level[uda->cfg[CMD_AGC_LEVEL]]);

    snd_iprintf(buffer, "Mute                : %s\n", uda->cfg[CMD_MUTE] ? "on" : "off");

    if (uda->cfg[CMD_VOLUME] == 0)
        snd_iprintf(buffer, "Volume              : 0 dB\n");
    else if (uda->cfg[CMD_VOLUME] < 62)
        snd_iprintf(buffer, "Volume              : %d dB\n", -1*uda->cfg[CMD_VOLUME] +1);
    else
        snd_iprintf(buffer, "Volume              : -INF dB\n");
    snd_iprintf(buffer, "Bass                : %s\n", bass_values[uda->cfg[CMD_FILTER]][uda->cfg[CMD_BASS]]);
    snd_iprintf(buffer, "Trebble             : %d dB\n", uda->cfg[CMD_FILTER] ? 2*uda->cfg[CMD_TREBBLE] : 0);
    snd_iprintf(buffer, "Input Gain (6dB)    : %s\n", uda->cfg[CMD_IGAIN] ? "on" : "off");
    snd_iprintf(buffer, "Output Gain (6dB)   : %s\n", uda->cfg[CMD_OGAIN] ? "on" : "off");
    snd_iprintf(buffer, "Mic sensitivity     : %s\n", mic_sens_value[uda->cfg[CMD_MIC]]);

   
    if(uda->cfg[CMD_CH1] < 31)
        snd_iprintf(buffer, "Mixer gain channel 1: -%d.%c dB\n",
                ((uda->cfg[CMD_CH1] >> 1) * 3) + (uda->cfg[CMD_CH1] & 1),
                uda->cfg[CMD_CH1] & 1 ? '5' : '0');
    else
        snd_iprintf(buffer, "Mixer gain channel 1: -INF dB\n");
    if(uda->cfg[CMD_CH2] < 31)
        snd_iprintf(buffer, "Mixer gain channel 2: -%d.%c dB\n",
                ((uda->cfg[CMD_CH2] >> 1) * 3) + (uda->cfg[CMD_CH2] & 1),
                uda->cfg[CMD_CH2] & 1 ? '5' : '0');
    else
        snd_iprintf(buffer, "Mixer gain channel 2: -INF dB\n");

    if(uda->cfg[CMD_IG] > 5)
        snd_iprintf(buffer, "Input Amp. Gain ch 2: %d.%c dB\n",
                (uda->cfg[CMD_IG] >> 1) -3, uda->cfg[CMD_IG] & 1 ? '5' : '0');
    else
        snd_iprintf(buffer, "Input Amp. Gain ch 2: %s dB\n",  ig_small_value[uda->cfg[CMD_IG]]);
}

static void snd_uda1341_proc_regs_read(struct snd_info_entry *entry,
                       struct snd_info_buffer *buffer)
{
    struct l3_client *clnt = entry->private_data;
    struct uda1341 *uda = clnt->driver_data;       
    int reg;
    char buf[12];

    for (reg = 0; reg < uda1341_reg_last; reg ++) {
        if (reg == empty)
            continue;
        int2str_bin8(uda->regs[reg], buf);
        snd_iprintf(buffer, "%s = %s\n", uda1341_reg_names[reg], buf);
    }

    int2str_bin8(snd_uda1341_codec_read(clnt, UDA1341_DATA1), buf);
    snd_iprintf(buffer, "DATA1 = %s\n", buf);
}
#endif /* CONFIG_PROC_FS */

static void __devinit snd_uda1341_proc_init(struct snd_card *card, struct l3_client *clnt)
{
    struct snd_info_entry *entry;

    if (! snd_card_proc_new(card, "uda1341", &entry))
        snd_info_set_text_ops(entry, clnt, snd_uda1341_proc_read);
    if (! snd_card_proc_new(card, "uda1341-regs", &entry))
        snd_info_set_text_ops(entry, clnt, snd_uda1341_proc_regs_read);
}

/* }}} */

/* {{{ Mixer controls setting */

/* {{{ UDA1341 single functions */

#define UDA1341_SINGLE(xname, where, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_uda1341_info_single, \
  .get = snd_uda1341_get_single, .put = snd_uda1341_put_single, \
  .private_value = where | (reg << 5) | (shift << 9) | (mask << 12) | (invert << 18) \
}

static int snd_uda1341_info_single(struct snd_kcontrol *kcontrol,
                   struct snd_ctl_elem_info *uinfo)
{
    int mask = (kcontrol->private_value >> 12) & 63;

    uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
    uinfo->count = 1;
    uinfo->value.integer.min = 0;
    uinfo->value.integer.max = mask;
    return 0;
}

static int snd_uda1341_get_single(struct snd_kcontrol *kcontrol,
                  struct snd_ctl_elem_value *ucontrol)
{
    struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
    struct uda1341 *uda = clnt->driver_data;
    int where = kcontrol->private_value & 31;       
    int mask = (kcontrol->private_value >> 12) & 63;
    int invert = (kcontrol->private_value >> 18) & 1;
       
    ucontrol->value.integer.value[0] = uda->cfg[where];
    if (invert)
        ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];

    return 0;
}

static int snd_uda1341_put_single(struct snd_kcontrol *kcontrol,
                  struct snd_ctl_elem_value *ucontrol)
{
    struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
    struct uda1341 *uda = clnt->driver_data;
    int where = kcontrol->private_value & 31;       
    int reg = (kcontrol->private_value >> 5) & 15;
    int shift = (kcontrol->private_value >> 9) & 7;
    int mask = (kcontrol->private_value >> 12) & 63;
    int invert = (kcontrol->private_value >> 18) & 1;
    unsigned short val;

    val = (ucontrol->value.integer.value[0] & mask);
    if (invert)
        val = mask - val;

    uda->cfg[where] = val;
    return snd_uda1341_update_bits(clnt, reg, mask, shift, val, FLUSH);
}

/* }}} */

/* {{{ UDA1341 enum functions */

#define UDA1341_ENUM(xname, where, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_uda1341_info_enum, \
  .get = snd_uda1341_get_enum, .put = snd_uda1341_put_enum, \
  .private_value = where | (reg << 5) | (shift << 9) | (mask << 12) | (invert << 18) \
}

static int snd_uda1341_info_enum(struct snd_kcontrol *kcontrol,
                 struct snd_ctl_elem_info *uinfo)
{
    int where = kcontrol->private_value & 31;
    const char **texts;
   
    // this register we don't handle this way
    if (!uda1341_enum_items[where])
        return -EINVAL;

    uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
    uinfo->count = 1;
    uinfo->value.enumerated.items = uda1341_enum_items[where];

    if (uinfo->value.enumerated.item >= uda1341_enum_items[where])
        uinfo->value.enumerated.item = uda1341_enum_items[where] - 1;

    texts = uda1341_enum_names[where];
    strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
    return 0;
}

static int snd_uda1341_get_enum(struct snd_kcontrol *kcontrol,
                struct snd_ctl_elem_value *ucontrol)
{
    struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
    struct uda1341 *uda = clnt->driver_data;
    int where = kcontrol->private_value & 31;       
       
    ucontrol->value.enumerated.item[0] = uda->cfg[where];   
    return 0;
}

static int snd_uda1341_put_enum(struct snd_kcontrol *kcontrol,
                struct snd_ctl_elem_value *ucontrol)
{
    struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
    struct uda1341 *uda = clnt->driver_data;
    int where = kcontrol->private_value & 31;       
    int reg = (kcontrol->private_value >> 5) & 15;
    int shift = (kcontrol->private_value >> 9) & 7;
    int mask = (kcontrol->private_value >> 12) & 63;

    uda->cfg[where] = (ucontrol->value.enumerated.item[0] & mask);
   
    return snd_uda1341_update_bits(clnt, reg, mask, shift, uda->cfg[where], FLUSH);
}

/* }}} */

/* {{{ UDA1341 2regs functions */

#define UDA1341_2REGS(xname, where, reg_1, reg_2, shift_1, shift_2, mask_1, mask_2, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), .info = snd_uda1341_info_2regs, \
  .get = snd_uda1341_get_2regs, .put = snd_uda1341_put_2regs, \
  .private_value = where | (reg_1 << 5) | (reg_2 << 9) | (shift_1 << 13) | (shift_2 << 16) | \
                         (mask_1 << 19) | (mask_2 << 25) | (invert << 31) \
}


static int snd_uda1341_info_2regs(struct snd_kcontrol *kcontrol,
                  struct snd_ctl_elem_info *uinfo)
{
    int mask_1 = (kcontrol->private_value >> 19) & 63;
    int mask_2 = (kcontrol->private_value >> 25) & 63;
    int mask;
       
    mask = (mask_2 + 1) * (mask_1 + 1) - 1;
    uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
    uinfo->count = 1;
    uinfo->value.integer.min = 0;
    uinfo->value.integer.max = mask;
    return 0;
}

static int snd_uda1341_get_2regs(struct snd_kcontrol *kcontrol,
                 struct snd_ctl_elem_value *ucontrol)
{
    struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
    struct uda1341 *uda = clnt->driver_data;
    int where = kcontrol->private_value & 31;
    int mask_1 = (kcontrol->private_value >> 19) & 63;
    int mask_2 = (kcontrol->private_value >> 25) & 63;       
    int invert = (kcontrol->private_value >> 31) & 1;
    int mask;

    mask = (mask_2 + 1) * (mask_1 + 1) - 1;

    ucontrol->value.integer.value[0] = uda->cfg[where];
    if (invert)
        ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
    return 0;
}

static int snd_uda1341_put_2regs(struct snd_kcontrol *kcontrol,
                 struct snd_ctl_elem_value *ucontrol)
{
    struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
    struct uda1341 *uda = clnt->driver_data;       
    int where = kcontrol->private_value & 31;       
    int reg_1 = (kcontrol->private_value >> 5) & 15;
    int reg_2 = (kcontrol->private_value >> 9) & 15;       
    int shift_1 = (kcontrol->private_value >> 13) & 7;
    int shift_2 = (kcontrol->private_value >> 16) & 7;
    int mask_1 = (kcontrol->private_value >> 19) & 63;
    int mask_2 = (kcontrol->private_value >> 25) & 63;       
    int invert = (kcontrol->private_value >> 31) & 1;
    int mask;
    unsigned short val1, val2, val;

    val = ucontrol->value.integer.value[0];
        
    mask = (mask_2 + 1) * (mask_1 + 1) - 1;

    val1 = val & mask_1;
    val2 = (val / (mask_1 + 1)) & mask_2;       

    if (invert) {
        val1 = mask_1 - val1;
        val2 = mask_2 - val2;
    }

    uda->cfg[where] = invert ? mask - val : val;
       
    //FIXME - return value
    snd_uda1341_update_bits(clnt, reg_1, mask_1, shift_1, val1, FLUSH);
    return snd_uda1341_update_bits(clnt, reg_2, mask_2, shift_2, val2, FLUSH);
}

/* }}} */
 
static struct snd_kcontrol_new snd_uda1341_controls[] = {
    UDA1341_SINGLE("Master Playback Switch", CMD_MUTE, data0_2, 2, 1, 1),
    UDA1341_SINGLE("Master Playback Volume", CMD_VOLUME, data0_0, 0, 63, 1),

    UDA1341_SINGLE("Bass Playback Volume", CMD_BASS, data0_1, 2, 15, 0),
    UDA1341_SINGLE("Treble Playback Volume", CMD_TREBBLE, data0_1, 0, 3, 0),

    UDA1341_SINGLE("Input Gain Switch", CMD_IGAIN, stat1, 5, 1, 0),
    UDA1341_SINGLE("Output Gain Switch", CMD_OGAIN, stat1, 6, 1, 0),

    UDA1341_SINGLE("Mixer Gain Channel 1 Volume", CMD_CH1, ext0, 0, 31, 1),
    UDA1341_SINGLE("Mixer Gain Channel 2 Volume", CMD_CH2, ext1, 0, 31, 1),

    UDA1341_SINGLE("Mic Sensitivity Volume", CMD_MIC, ext2, 2, 7, 0),

    UDA1341_SINGLE("AGC Output Level", CMD_AGC_LEVEL, ext6, 0, 3, 0),
    UDA1341_SINGLE("AGC Time Constant", CMD_AGC_TIME, ext6, 2, 7, 0),
    UDA1341_SINGLE("AGC Time Constant Switch", CMD_AGC, ext4, 4, 1, 0),

    UDA1341_SINGLE("DAC Power", CMD_DAC, stat1, 0, 1, 0),
    UDA1341_SINGLE("ADC Power", CMD_ADC, stat1, 1, 1, 0),

    UDA1341_ENUM("Peak detection", CMD_PEAK, data0_2, 5, 1, 0),
    UDA1341_ENUM("De-emphasis", CMD_DEEMP, data0_2, 3, 3, 0),
    UDA1341_ENUM("Mixer mode", CMD_MIXER, ext2, 0, 3, 0),
    UDA1341_ENUM("Filter mode", CMD_FILTER, data0_2, 0, 3, 0),

    UDA1341_2REGS("Gain Input Amplifier Gain (channel 2)", CMD_IG, ext4, ext5, 0, 0, 3, 31, 0),
};

static void uda1341_free(struct l3_client *clnt)
{
    l3_detach_client(clnt); // calls kfree for driver_data (struct uda1341)
    kfree(clnt);
}

static int uda1341_dev_free(struct snd_device *device)
{
    struct l3_client *clnt = device->device_data;
    uda1341_free(clnt);
    return 0;
}

int __init snd_chip_uda1341_mixer_new(struct snd_card *card, struct l3_client **clntp)
{
    static struct snd_device_ops ops = {
        .dev_free =     uda1341_dev_free,
    };
    struct l3_client *clnt;
    int idx, err;

    snd_assert(card != NULL, return -EINVAL);

    clnt = kzalloc(sizeof(*clnt), GFP_KERNEL);
    if (clnt == NULL)
        return -ENOMEM;
        
    if ((err = l3_attach_client(clnt, "l3-bit-sa1100-gpio", UDA1341_ALSA_NAME))) {
        kfree(clnt);
        return err;
    }

    for (idx = 0; idx < ARRAY_SIZE(snd_uda1341_controls); idx++) {
        if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_uda1341_controls[idx], clnt))) < 0) {
            uda1341_free(clnt);
            return err;
        }
    }

    if ((err = snd_device_new(card, SNDRV_DEV_CODEC, clnt, &ops)) < 0) {
        uda1341_free(clnt);
        return err;
    }

    *clntp = clnt;
    strcpy(card->mixername, "UDA1341TS Mixer");
    ((struct uda1341 *)clnt->driver_data)->card = card;
       
    snd_uda1341_proc_init(card, clnt);
       
    return 0;
}

/* }}} */

/* {{{ L3 operations */

static int uda1341_attach(struct l3_client *clnt)
{
    struct uda1341 *uda;

    uda = kzalloc(sizeof(*uda), 0, GFP_KERNEL);
    if (!uda)
        return -ENOMEM;

    /* init fixed parts of my copy of registers */
    uda->regs[stat0]   = STAT0;
    uda->regs[stat1]   = STAT1;

    uda->regs[data0_0] = DATA0_0;
    uda->regs[data0_1] = DATA0_1;
    uda->regs[data0_2] = DATA0_2;

    uda->write = snd_uda1341_codec_write;
    uda->read = snd_uda1341_codec_read;
 
    spin_lock_init(&uda->reg_lock);
       
    clnt->driver_data = uda;
    return 0;
}

static void uda1341_detach(struct l3_client *clnt)
{
    kfree(clnt->driver_data);
}

static int
uda1341_command(struct l3_client *clnt, int cmd, void *arg)
{
    if (cmd != CMD_READ_REG)
        return snd_uda1341_cfg_write(clnt, cmd, (int) arg, FLUSH);

    return snd_uda1341_codec_read(clnt, (int) arg);
}

static int uda1341_open(struct l3_client *clnt)
{
    struct uda1341 *uda = clnt->driver_data;

    uda->active = 1;

    /* init default configuration */
    snd_uda1341_cfg_write(clnt, CMD_RESET, 0, REGS_ONLY);
    snd_uda1341_cfg_write(clnt, CMD_FS, F256, FLUSH);       // unknown state after reset
    snd_uda1341_cfg_write(clnt, CMD_FORMAT, LSB16, FLUSH);  // unknown state after reset
    snd_uda1341_cfg_write(clnt, CMD_OGAIN, ON, FLUSH);      // default off after reset
    snd_uda1341_cfg_write(clnt, CMD_IGAIN, ON, FLUSH);      // default off after reset
    snd_uda1341_cfg_write(clnt, CMD_DAC, ON, FLUSH);    // ??? default value after reset
    snd_uda1341_cfg_write(clnt, CMD_ADC, ON, FLUSH);    // ??? default value after reset
    snd_uda1341_cfg_write(clnt, CMD_VOLUME, 20, FLUSH);     // default 0dB after reset
    snd_uda1341_cfg_write(clnt, CMD_BASS, 0, REGS_ONLY);    // default value after reset
    snd_uda1341_cfg_write(clnt, CMD_TREBBLE, 0, REGS_ONLY); // default value after reset
    snd_uda1341_cfg_write(clnt, CMD_PEAK, AFTER, REGS_ONLY);// default value after reset
    snd_uda1341_cfg_write(clnt, CMD_DEEMP, NONE, REGS_ONLY);// default value after reset
    //at this moment should be QMUTED by h3600_audio_init
    snd_uda1341_cfg_write(clnt, CMD_MUTE, OFF, REGS_ONLY);  // default value after reset
    snd_uda1341_cfg_write(clnt, CMD_FILTER, MAX, FLUSH);    // defaul flat after reset
    snd_uda1341_cfg_write(clnt, CMD_CH1, 31, FLUSH);        // default value after reset
    snd_uda1341_cfg_write(clnt, CMD_CH2, 4, FLUSH);         // default value after reset
    snd_uda1341_cfg_write(clnt, CMD_MIC, 4, FLUSH);         // default 0dB after reset
    snd_uda1341_cfg_write(clnt, CMD_MIXER, MIXER, FLUSH);   // default doub.dif.mode         
    snd_uda1341_cfg_write(clnt, CMD_AGC, OFF, FLUSH);       // default value after reset
    snd_uda1341_cfg_write(clnt, CMD_IG, 0, FLUSH);          // unknown state after reset
    snd_uda1341_cfg_write(clnt, CMD_AGC_TIME, 0, FLUSH);    // default value after reset
    snd_uda1341_cfg_write(clnt, CMD_AGC_LEVEL, 0, FLUSH);   // default value after reset

    return 0;
}

static void uda1341_close(struct l3_client *clnt)
{
    struct uda1341 *uda = clnt->driver_data;

    uda->active = 0;
}

/* }}} */

/* {{{ Module and L3 initialization */

static struct l3_ops uda1341_ops = {
    .open =        uda1341_open,
    .command =    uda1341_command,
    .close =    uda1341_close,
};

static struct l3_driver uda1341_driver = {
    .name =        UDA1341_ALSA_NAME,
    .attach_client = uda1341_attach,
    .detach_client = uda1341_detach,
    .ops =        &uda1341_ops,
    .owner =    THIS_MODULE,
};

static int __init uda1341_init(void)
{
    return l3_add_driver(&uda1341_driver);
}

static void __exit uda1341_exit(void)
{
    l3_del_driver(&uda1341_driver);
}

module_init(uda1341_init);
module_exit(uda1341_exit);

MODULE_AUTHOR("Tomas Kasparek ");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Philips UDA1341 CODEC driver for ALSA");
MODULE_SUPPORTED_DEVICE("{{UDA1341,UDA1341TS}}");

EXPORT_SYMBOL(snd_chip_uda1341_mixer_new);

/* }}} */

/*
 * Local variables:
 * indent-tabs-mode: t
 * End:
 */

阅读(3694) | 评论(5) | 转发(0) |
给主人留下些什么吧!~~

chinaunix网友2010-04-29 19:18:48

还有个问题请教博主:经UDA1341TS语音新芯片采样的信号,如果直接读出来,是不是就是波形编码的信号?加上WAV的文件头和尾,就是WAV格式的音频了?如果我想要这个芯片产生MP3格式的文件,应该怎么办?

chinaunix网友2010-04-28 10:22:15

还有个问题请教博主:经UDA1341TS语音新芯片采样的信号,如果直接读出来,是不是就是波形编码的信号?加上WAV的文件头和尾,就是WAV格式的音频了?如果我想要这个芯片产生MP3格式的文件,应该怎么办?

gliethttp2010-04-23 13:02:18

tar jxvf 基于S3C2410A和UDA1341TS的嵌入式音频系统设计.doc.tar.bz2

chinaunix网友2010-04-20 13:30:18

请问博主能不能说一下上面的“基于S3C2410A和UDA1341TS的嵌入式音频系统设计.doc.tar.bz2”解压方法,小弟万分感谢!

chinaunix网友2010-04-20 13:03:57

我正在学习ARM嵌入式,博主分享的源码都是我非常需要的,非常感谢!