全部博文(2005)
分类:
2009-03-29 18:09:50
CE5.0 - eboot烧写NK.nb0的详细流程 可以参考《CE5.0 - eboot加载NK.nb0的详细流程》 nk.nb0首先通过umon下载到DDR中,然后执行烧写操作,烧写到flash上. PLATFORM\SMDK2440A\Src\Bootloader\Eboot\main.c ==>BootloaderMain ==>OEMPlatformInit => MainMenu()从串口打印menu选择菜单 ==>DownloadImage dwImageStart = *pdwImageStart = 0x80001000; //0x80001000 & 0x8C200000; dwImageLength = *pdwImageLength = 0x1500000; // 21M 它给固定死了,而且仅仅21M,所以应该根据自己的nk.nb0的大小进行修改[luther.gliethttp] *pdwLaunchAddr = 0x8002C794;// lanch地址也是固定的 显示menu,根据选择烧写相应的文件,比如输入3表示烧写 // Nk.nb0 case '3': EdbgOutputDebugString ("Nk.nb0 chosed...\r\n"); dwImageStart = *pdwImageStart = 0x80001000; dwImageLength = *pdwImageLength = 0x1500000; *pdwLaunchAddr = 0x8002c794; g_ImageType = IMAGE_TYPE_RAMIMAGE;//选择将要烧写的文件为Nk.nb0 goto len;//接着接收用户输入的image文件大小[luther.gliethttp] mid: if (!g_DownloadManifest.dwNumRegions)//这是第一次调用g_DownloadManifest结构体,所以一定等于0 { g_DownloadManifest.dwNumRegions = 1;//region总数为1 g_DownloadManifest.Region[0].dwRegionStart = dwImageStart;//起始地址为nk.nb0加载地址,也是umon下载地址[luther.gliethttp] g_DownloadManifest.Region[0].dwRegionLength = dwImageLength;//nk.nb0文件长度 // Provide the download manifest to the OEM. // if (g_pOEMMultiBINNotify) { //在OEMDebugInit中g_pOEMMultiBINNotify = OEMMultiBINNotify;进行了赋值. g_pOEMMultiBINNotify((PDownloadManifest)&g_DownloadManifest);//仅定义1 region } } ==>OEMMultiBINNotify void OEMMultiBINNotify(const PMultiBINInfo pInfo) { BYTE nCount; DWORD g_dwMinImageStart; OALMSG(OAL_FUNC, (TEXT("+OEMMultiBINNotify.\r\n"))); if (!pInfo || !pInfo->dwNumRegions) { OALMSG(OAL_WARN, (TEXT("WARNING: OEMMultiBINNotify: Invalid BIN region descriptor(s).\r\n"))); return; } if (!pInfo->Region[0].dwRegionStart && !pInfo->Region[0].dwRegionLength) { return; } g_dwMinImageStart = pInfo->Region[0].dwRegionStart;//最小的地址 OALMSG(TRUE, (TEXT("\r\nDownload BIN file information:\r\n"))); OALMSG(TRUE, (TEXT("-----------------------------------------------------\r\n"))); for (nCount = 0 ; nCount < pInfo->dwNumRegions ; nCount++) { OALMSG(TRUE, (TEXT("[%d]: Base Address=0x%x Length=0x%x\r\n"), nCount, pInfo->Region[nCount].dwRegionStart, pInfo->Region[nCount].dwRegionLength)); if (pInfo->Region[nCount].dwRegionStart < g_dwMinImageStart) { g_dwMinImageStart = pInfo->Region[nCount].dwRegionStart; if (g_dwMinImageStart == 0) { OALMSG(OAL_WARN, (TEXT("WARNING: OEMMultiBINNotify: Bad start address for region (%d).\r\n"), nCount)); return; } } } memcpy((LPBYTE)&g_BINRegionInfo, (LPBYTE)pInfo, sizeof(MultiBINInfo));//ok,将BINinfo信息转储到全局变量g_BINRegionInfo中,以便其它单元引用到我们的nk.nb0这个image足够信息[luther.gliethttp] OALMSG(TRUE, (TEXT("-----------------------------------------------------\r\n"))); OALMSG(OAL_FUNC, (TEXT("_OEMMultiBINNotify.\r\n"))); } ==>if (OEMMapMemAddr (dwImageStart, dwImageStart + ROM_SIGNATURE_OFFSET) == ROM_SIGNATURE) 即nk.nb0的第0x40偏移处应该为0x43454345 // Check for pTOC signature ("CECE") here, after image in place if (*(LPDWORD) OEMMapMemAddr (dwImageStart, dwImageStart + ROM_SIGNATURE_OFFSET) == ROM_SIGNATURE) { //#define ROM_SIGNATURE_OFFSET 0x40 // Offset from the image's physfirst address to the ROM signature. //#define ROM_SIGNATURE 0x43454345 //#define ROM_TOC_POINTER_OFFSET 0x44 // Offset from the image's physfirst address to the TOC pointer. //#define ROM_TOC_OFFSET_OFFSET 0x48 // Offset from the image's physfirst address to the TOC offset (from physfirst). //使用winhex在nk.nb0获得如下数据 //00000040 : 45 43 45 43 C8 ED 90 81 C8 DD 90 01 00 00 00 00 //所以dwImageStart + ROM_SIGNATURE_OFFSET + sizeof(ULONG)大小等于0x40+4=0x44所以对应的内容为0x8190EDC8 //在上面的DownloadImage中可以看到dwImageStart = 0x80001000; //0x8190EDC8为TOC指针虚拟地址值,0x190DDC8为其对应的物理地址偏移 //所以0x8190EDC8 - 0x80001000 = 0x190DDC8 //其实这个差值就存储在了0x48偏移地址处[luther.gliethttp] //dwpToc = *(LPDWORD)0x8190EDC8;取出该虚拟地址处的数据,即偏移0x190DDC8处的4字节数据 //使用winhex获得数据为 //E3 01 DA 01 //即:0x1DA01E3 //所以最后dwpToc = 0x1DA01E3 + g_dwROMOffset;//这里g_dwROMOffset因为没有地方对其赋值,所以其值为默认值0 //typedef struct ROMHDR { // ULONG dllfirst; // first DLL address // ULONG dlllast; // last DLL address // ULONG physfirst; // first physical address // ULONG physlast; // highest physical address // ULONG nummods; // number of TOCentry's // ULONG ulRAMStart; // start of RAM // ULONG ulRAMFree; // start of RAM free space // ULONG ulRAMEnd; // end of RAM // ULONG ulCopyEntries; // number of copy section entries // ULONG ulCopyOffset; // offset to copy section // ULONG ulProfileLen; // length of PROFentries RAM // ULONG ulProfileOffset; // offset to PROFentries // ULONG numfiles; // number of FILES // ULONG ulKernelFlags; // optional kernel flags from ROMFLAGS .bib config option // ULONG ulFSRamPercent; // Percentage of RAM used for filesystem // // from FSRAMPERCENT .bib config option // // byte 0 = #4K chunks/Mbyte of RAM for filesystem 0-2Mbytes 0-255 // // byte 1 = #4K chunks/Mbyte of RAM for filesystem 2-4Mbytes 0-255 // // byte 2 = #4K chunks/Mbyte of RAM for filesystem 4-6Mbytes 0-255 // // byte 3 = #4K chunks/Mbyte of RAM for filesystem > 6Mbytes 0-255 // // ULONG ulDrivglobStart; // device driver global starting address // ULONG ulDrivglobLen; // device driver global length // USHORT usCPUType; // CPU (machine) Type // USHORT usMiscFlags; // Miscellaneous flags // PVOID pExtensions; // pointer to ROM Header extensions // ULONG ulTrackingStart; // tracking memory starting address // ULONG ulTrackingLen; // tracking memory ending address //} ROMHDR; //#define TOCentry_dwFileAttributes 0 //#define TOCentry_ftTime 4 //#define TOCentry_lpszFileSize 12 //#define TOCentry_lpszFileName 16 //#define TOCentry_ulE32Offset 20 //#define TOCentry_ulO32Offset 24 //#define TOCentry_ulLoadOffset 28 //#define SIZEOF_TOCentry 32 //typedef struct TOCentry { // MODULE BIB section structure // DWORD dwFileAttributes; // FILETIME ftTime; // DWORD nFileSize; // LPSTR lpszFileName; // ULONG ulE32Offset; // Offset to E32 structure // ULONG ulO32Offset; // Offset to O32 structure // ULONG ulLoadOffset; // MODULE load buffer offset //} TOCentry, *LPTOCentry; //0190DDC0 : 57 EF 50 00 58 00 00 00 E3 01 DA 01 00 00 00 02 //0190DDD0 : 00 10 00 80 94 0D 91 81 AD 00 00 00 00 00 20 8C //0190DDE0 : 00 90 22 8C 00 00 00 8E 01 00 00 00 C0 3D C2 80 //0190DDF0 : 00 00 00 00 00 00 00 00 5A 00 00 00 02 00 00 00 //0190DE00 : 80 80 80 80 00 00 00 00 00 00 00 00 C2 01 02 00 //0190DE10 : 10 32 00 80 00 00 00 00 00 00 00 00 07 00 00 00 //07 00 00 00 开始为TOC,一共占32字节空间 //0190DE20 : D4 A3 9A 28 AB 1E C7 01 00 B0 06 00 F8 1F C5 80 //该4字节F8 1F C5 80为TOCentry_lpszFileName虚拟地址,其偏移值为0x80C51FF8 - 0x80001000 = 0xC50FF8 //0190DE30 : 84 CF 58 80 9C CF 1F 80 00 10 00 80 07 10 00 00 //从该07 10 00 00 00开始为下一个TOC,一共占32字节空间 //0190DE40 : 3A F3 8F 3C AB 1E C7 01 00 84 08 00 F4 5F 4D 80 //0190DE50 : 6C 5F C9 80 A0 0F C2 80 00 90 09 80 07 00 00 00 //从0x0190DDC8开始 //dllfirst = 0x01DA01E3 //dlllast = 0x20000000 //physfirst = 0x80001000 //physlast = 0x81910D94 //nummods = 0x000000AD //ulRAMStart= 0x8C200000 //ulRAMFree = 0x8C229000 //ulRAMEnd = 0x8E000000 //ulCopyEntries = 0x00000001 //ulCopyOffset = 0x80C23DC0 //ulProfileLen = 0x00000000 //ulProfileOffset = 0x00000000 //numfiles = 0x0000005A //ulKernelFlags = 0x00000002 //ulFSRamPercent= 0x80808080 //ulDrivglobStart = 0x00000000 //ulDrivglobLen = 0x00000000 //usCPUType = 0x01C2 //usMiscFlags = 0x0002 //pExtensions = 0x80003210 //ulTrackingStart = 0x00000000 //ulTrackingLen = 0x00000000 //紧跟ROMHDR其后的为nummods个TOCentry结构体 dwpToc = *(LPDWORD) OEMMapMemAddr (dwImageStart, dwImageStart + ROM_SIGNATURE_OFFSET + sizeof(ULONG));//OEMMapMemAddr直接返回dwImageStart + ROM_SIGNATURE_OFFSET + sizeof(ULONG))数值,即0x8190EDC8这个虚拟地址处的内容,0x8190EDC8虚拟地址对应的物理偏移值为0x190DDC8,该值位于0x48偏移处[luther.gliethttp] // need to map the content again since the pointer is going to be in a fixup address dwpToc = (DWORD) OEMMapMemAddr (dwImageStart, dwpToc + g_dwROMOffset); EdbgOutputDebugString ("ROMHDR at Address %Xh\r\n", dwImageStart + ROM_SIGNATURE_OFFSET + sizeof (DWORD)); // right after signature } case BL_JUMP: ==>OEMLaunch ==>switch (g_ImageType) case IMAGE_TYPE_RAMIMAGE: g_pTOC->id[g_dwTocEntry].dwLoadAddress = dwImageStart; g_pTOC->id[g_dwTocEntry].dwTtlSectors = FILE_TO_SECTOR_SIZE(dwImageLength); if (!WriteOSImageToBootMedia(dwImageStart, dwImageLength, dwLaunchAddr))//写数据 { OALMSG(OAL_ERROR, (TEXT("ERROR: OEMLaunch: Failed to store image to Smart Media.\r\n"))); goto CleanUp; } if (dwLaunchAddr && (g_pTOC->id[g_dwTocEntry].dwJumpAddress != dwLaunchAddr)) { //*pdwLaunchAddr = 0x8002C794;// 我们的lanch地址也是固定的 g_pTOC->id[g_dwTocEntry].dwJumpAddress = dwLaunchAddr;//修改跳转地址到位于block块1区的TOC数据 if ( !TOC_Write() ) {//回写TOC到block块1 EdbgOutputDebugString("*** OEMLaunch ERROR: TOC_Write failed! Next boot may not load from disk *** \r\n"); } TOC_Print(); } else { dwLaunchAddr= g_pTOC->id[g_dwTocEntry].dwJumpAddress; EdbgOutputDebugString("INFO: using TOC[%d] dwJumpAddress: 0x%x\r\n", g_dwTocEntry, dwLaunchAddr); } break; //然后就执行Lanch()登陆. // Jump to downloaded image (use the physical address since we'll be turning the MMU off)... // dwPhysLaunchAddr = (DWORD)OALVAtoPA((void *)dwLaunchAddr);//根据位于PLATFORM\SMDK2440A\Src\Inc\oemaddrtab_cfg.inc下的g_oalAddressTable定义的转换表,将虚拟地址转为对应的物理地址 OALMSG(TRUE, (TEXT("INFO: OEMLaunch: Jumping to Physical Address 0x%Xh (Virtual Address 0x%Xh)...\r\n\r\n\r\n"), dwPhysLaunchAddr, dwLaunchAddr));//打印该log信息 // Jump... // Launch(dwPhysLaunchAddr);//执行PLATFORM\SMDK2440A\Src\Bootloader\Eboot\util.s|32| LEAF_ENTRY Launch中定义的Lanuch函数,代码见下面[lutehr.gliethttp] /* @func BOOL | WriteOSImageToBootMedia | Stores the image cached in RAM to the Boot Media. The image may be comprised of one or more BIN regions. @rdesc TRUE = Success, FALSE = Failure. @comm @xref */ BOOL WriteOSImageToBootMedia(DWORD dwImageStart, DWORD dwImageLength, DWORD dwLaunchAddr) { BYTE nCount; DWORD dwNumExts; PXIPCHAIN_SUMMARY pChainInfo = NULL; EXTENSION *pExt = NULL; DWORD dwBINFSPartLength = 0; HANDLE hPart, hPartEx; DWORD dwStoreOffset; DWORD dwMaxRegionLength[BL_MAX_BIN_REGIONS] = {0}; DWORD dwChainStart, dwChainLength; // Initialize the variables dwChainStart = dwChainLength = 0; OALMSG(OAL_FUNC, (TEXT("+WriteOSImageToBootMedia\r\n"))); OALMSG(OAL_INFO, (TEXT("+WriteOSImageToBootMedia: g_dwTocEntry =%d, ImageStart: 0x%x, ImageLength: 0x%x, LaunchAddr:0x%x\r\n"), g_dwTocEntry, dwImageStart, dwImageLength, dwLaunchAddr)); if ( !g_bBootMediaExist ) { OALMSG(OAL_ERROR, (TEXT("ERROR: WriteOSImageToBootMedia: device doesn't exist.\r\n"))); return(FALSE); } if ( !VALID_TOC(g_pTOC) ) { OALMSG(OAL_WARN, (TEXT("WARN: WriteOSImageToBootMedia: INVALID_TOC\r\n"))); if ( !TOC_Init(g_dwTocEntry, g_ImageType, dwImageStart, dwImageLength, dwLaunchAddr) ) { OALMSG(OAL_ERROR, (TEXT("ERROR: INVALID_TOC\r\n"))); return(FALSE); } } // Look in the kernel region's extension area for a multi-BIN extension descriptor. // This region, if found, details the number, start, and size of each BIN region. // 这里我们只有nk.nb0一个region需要烧写 for (nCount = 0, dwNumExts = 0 ; (nCount < g_BINRegionInfo.dwNumRegions); nCount++) { // Does this region contain nk.exe and an extension pointer? //我们这里返回的数值就是0x80003210,对其分析见后面[luther.gliethttp] //对应的nk.nb0偏移值为0x80003210 - 0x80001000 = 0x2210 pExt = (EXTENSION *)GetKernelExtPointer(g_BINRegionInfo.Region[nCount].dwRegionStart, g_BINRegionInfo.Region[nCount].dwRegionLength ); if ( pExt != NULL) { //#define PID_LENGTH 10 //typedef struct ROMPID { // union{ // DWORD dwPID[PID_LENGTH]; // PID 可见该union一共40字节数据 // struct{ // char name[(PID_LENGTH - 4) * sizeof(DWORD)]; // DWORD type; // PVOID pdata; // DWORD length; // DWORD reserved; // }; // }; // PVOID pNextExt; // pointer to next extension if any //} ROMPID, EXTENSION; //所以一共占用了44字节数据 //0x2210 ~ 0x2210 + 44空间全部为0,所以不会找到"chain information" // If there is an extension pointer region, walk it until the end. // while (pExt) { DWORD dwBaseAddr = g_BINRegionInfo.Region[nCount].dwRegionStart; pExt = (EXTENSION *)OEMMapMemAddr(dwBaseAddr, (DWORD)pExt); OALMSG(OAL_INFO, (TEXT("INFO: OEMLaunch: Found chain extenstion: '%s' @ 0x%x\r\n"), pExt->name, dwBaseAddr)); if ((pExt->type == 0) && !strcmp(pExt->name, "chain information")) { pChainInfo = (PXIPCHAIN_SUMMARY) OEMMapMemAddr(dwBaseAddr, (DWORD)pExt->pdata); dwNumExts = (pExt->length / sizeof(XIPCHAIN_SUMMARY)); OALMSG(OAL_INFO, (TEXT("INFO: OEMLaunch: Found 'chain information' (pChainInfo=0x%x Extensions=0x%x).\r\n"), (DWORD)pChainInfo, dwNumExts)); break; } pExt = (EXTENSION *)pExt->pNextExt; } } else { // Search for Chain region. Chain region doesn't have the ROMSIGNATURE set DWORD dwRegionStart = g_BINRegionInfo.Region[nCount].dwRegionStart; DWORD dwSig = *(LPDWORD) OEMMapMemAddr(dwRegionStart, dwRegionStart + ROM_SIGNATURE_OFFSET); if ( dwSig != ROM_SIGNATURE) { // It is the chain dwChainStart = dwRegionStart; dwChainLength = g_BINRegionInfo.Region[nCount].dwRegionLength; OALMSG(TRUE, (TEXT("Found the Chain region: StartAddress: 0x%X; Length: 0x%X\n"), dwChainStart, dwChainLength)); } } } // Determine how big the Total BINFS partition needs to be to store all of this. // if (pChainInfo && dwNumExts == g_BINRegionInfo.dwNumRegions) // We're downloading all the regions in a multi-region image... { DWORD i; OALMSG(TRUE, (TEXT("Writing multi-regions\r\n"))); for (nCount = 0, dwBINFSPartLength = 0 ; nCount < dwNumExts ; nCount++) { dwBINFSPartLength += (pChainInfo + nCount)->dwMaxLength; OALMSG(OAL_ERROR, (TEXT("BINFSPartMaxLength[%u]: 0x%x, TtlBINFSPartLength: 0x%x \r\n"), nCount, (pChainInfo + nCount)->dwMaxLength, dwBINFSPartLength)); // MultiBINInfo does not store each Regions MAX length, and pChainInfo is not in any particular order. // So, walk our MultiBINInfo matching up pChainInfo to find each regions MAX Length for (i = 0; i < dwNumExts; i++) { if ( g_BINRegionInfo.Region[i].dwRegionStart == (DWORD)((pChainInfo + nCount)->pvAddr) ) { dwMaxRegionLength[i] = (pChainInfo + nCount)->dwMaxLength; OALMSG(TRUE, (TEXT("dwMaxRegionLength[%u]: 0x%x \r\n"), i, dwMaxRegionLength[i])); break; } } } } else // A single BIN file or potentially a multi-region update (but the partition's already been created in this latter case). { //我们的下载程序将执行到这里[luther.gliethttp] dwBINFSPartLength = g_BINRegionInfo.Region[0].dwRegionLength; OALMSG(TRUE, (TEXT("Writing single region/multi-region update, dwBINFSPartLength: %u \r\n"), dwBINFSPartLength)); } // Open/Create the BINFS partition where images are stored. This partition starts immediately after the MBR on the Boot Media and its length is // determined by the maximum image size (or sum of all maximum sizes in a multi-region design). // Parameters are LOGICAL sectors. // //为nk.nb0建立主分区,管理(IMAGE_START_BLOCK+1)*PAGES_PER_BLOCK开始的扇区,管理大小为SECTOR_TO_BLOCK_SIZE(FILE_TO_SECTOR_SIZE(dwBINFSPartLength))*PAGES_PER_BLOCK //将该分区所有信息登记到了MBR中,hPart为申请到的主分区表指针[luther.gliethttp] hPart = BP_OpenPartition( (IMAGE_START_BLOCK+1)*PAGES_PER_BLOCK, // next block of MBR SECTOR_TO_BLOCK_SIZE(FILE_TO_SECTOR_SIZE(dwBINFSPartLength))*PAGES_PER_BLOCK, // align to block PART_BINFS, TRUE, PART_OPEN_ALWAYS); if (hPart == INVALID_HANDLE_VALUE ) { OALMSG(OAL_ERROR, (TEXT("ERROR: WriteOSImageToBootMedia: Failed to open/create partition.\r\n"))); return(FALSE); } // Are there multiple BIN files in RAM (we may just be updating one in a multi-BIN solution)? // for (nCount = 0, dwStoreOffset = 0; nCount < g_BINRegionInfo.dwNumRegions ; nCount++) { DWORD dwRegionStart = (DWORD)OEMMapMemAddr(0, g_BINRegionInfo.Region[nCount].dwRegionStart);//我们这里就是nk.nb0下载地址0x32001000对应的虚拟地址为0x80001000 DWORD dwRegionLength = g_BINRegionInfo.Region[nCount].dwRegionLength; // Media byte offset where image region is stored. dwStoreOffset += nCount ? dwMaxRegionLength[nCount-1] : 0;//如果是MultiBin,那么将一个挨一个的紧凑存储,其紧凑度由dwStoreOffset偏移指针控制,这个偏移指针数值就是这里所谓的 //逻辑地址[luther.gliethttp] // Set the file pointer (byte indexing) to the correct offset for this particular region. // if ( !BP_SetDataPointer(hPart, dwStoreOffset) )//从该分区的dwStoreOffset(以字节为单位)逻辑地址开始 { OALMSG(OAL_ERROR, (TEXT("ERROR: StoreImageToBootMedia: Failed to set data pointer in partition (offset=0x%x).\r\n"), dwStoreOffset)); return(FALSE); } // Write the region to the BINFS partition. // if ( !BP_WriteData(hPart, (LPBYTE)dwRegionStart, dwRegionLength) )//将数据顺序写到dwStoreOffset(以字节为单位)开始的地址后,长度dwRegionLength,代码见后面.[luther.gliethttp] { EdbgOutputDebugString("ERROR: StoreImageToBootMedia: Failed to write region to BINFS partition (start=0x%x, length=0x%x).\r\n", dwRegionStart, dwRegionLength); return(FALSE); } // update our TOC? // if ((g_pTOC->id[g_dwTocEntry].dwLoadAddress == g_BINRegionInfo.Region[nCount].dwRegionStart) && g_pTOC->id[g_dwTocEntry].dwTtlSectors == FILE_TO_SECTOR_SIZE(dwRegionLength) ) { //我们的符合该条件,所以执行了下面语句[luther.gliethttp] g_pTOC->id[g_dwTocEntry].dwStoreOffset = dwStoreOffset;//对期望Toc进行写操作,那么保存它的存储逻辑地址(以字节为单位)[luther.gliethttp] g_pTOC->id[g_dwTocEntry].dwJumpAddress = 0; // Filled upon return to OEMLaunch g_pTOC->id[g_dwTocEntry].dwImageType = g_ImageType; g_pTOC->id[g_dwTocEntry].sgList[0].dwSector = FILE_TO_SECTOR_SIZE(g_dwLastWrittenLoc); g_pTOC->id[g_dwTocEntry].sgList[0].dwLength = g_pTOC->id[g_dwTocEntry].dwTtlSectors; // copy Kernel Region to SDRAM for jump memcpy((void*)g_pTOC->id[g_dwTocEntry].dwLoadAddress, (void*)dwRegionStart, dwRegionLength); OALMSG(TRUE, (TEXT("Updateded TOC!\r\n"))); } else if( (dwChainStart == g_BINRegionInfo.Region[nCount].dwRegionStart) && (dwChainLength == g_BINRegionInfo.Region[nCount].dwRegionLength)) { //我们的没有执行到这里 // Update our TOC for Chain region g_pTOC->chainInfo.dwLoadAddress = dwChainStart; g_pTOC->chainInfo.dwFlashAddress = FILE_TO_SECTOR_SIZE(g_dwLastWrittenLoc); //在BP_WriteData()中对g_dwLastWrittenLoc进行了更新, //g_dwLastWrittenLoc = dwBlock * g_dwDataBytesPerBlock + dwOffsetBlock;//记录现在写的是第几个字节(物理地址)[luther.gliethttp] g_pTOC->chainInfo.dwLength = FILE_TO_SECTOR_SIZE(dwMaxRegionLength[nCount]); OALMSG(TRUE, (TEXT("Written Chain Region to the Flash\n"))); OALMSG(TRUE, (TEXT("LoadAddress = 0x%X; FlashAddress = 0x%X; Length = 0x%X\n"), g_pTOC->chainInfo.dwLoadAddress, g_pTOC->chainInfo.dwFlashAddress, g_pTOC->chainInfo.dwLength)); // Now copy it to the SDRAM memcpy((void *)g_pTOC->chainInfo.dwLoadAddress, (void *)dwRegionStart, dwRegionLength); } } // create extended partition in whatever is left // //为系统创建扩展分区, //1.eboot.nb0主分区 //2.nk.nb0主分区 //3.扩展分区[luther.gliethttp] hPartEx = BP_OpenPartition( NEXT_FREE_LOC, USE_REMAINING_SPACE, PART_DOS32, TRUE, PART_OPEN_ALWAYS); if (hPartEx == INVALID_HANDLE_VALUE ) { OALMSG(OAL_WARN, (TEXT("*** WARN: StoreImageToBootMedia: Failed to open/create Extended partition ***\r\n"))); } OALMSG(OAL_FUNC, (TEXT("-WriteOSImageToBootMedia\r\n"))); return(TRUE);//好了nk.nb0对应的MBR也创建了,nk.nb0也写进去了,对应的位于1块的TOC数据也更新了,扩展分区也创建了,工作完成了,返回ok.[luther.gliethttp] } /* @func PVOID | GetKernelExtPointer | Locates the kernel region's extension area pointer. @rdesc Pointer to the kernel's extension area. @comm @xref */ PVOID GetKernelExtPointer(DWORD dwRegionStart, DWORD dwRegionLength) { DWORD dwCacheAddress = 0; ROMHDR *pROMHeader; DWORD dwNumModules = 0; TOCentry *pTOC; if (dwRegionStart == 0 || dwRegionLength == 0) return(NULL); if (*(LPDWORD) OEMMapMemAddr (dwRegionStart, dwRegionStart + ROM_SIGNATURE_OFFSET) != ROM_SIGNATURE)//首先检查该region的ROM标志值是否正确[luther.gliethttp] return NULL; // A pointer to the ROMHDR structure lives just past the ROM_SIGNATURE (which is a longword value). Note that // this pointer is remapped since it might be a flash address (image destined for flash), but is actually cached // in RAM. // dwCacheAddress = *(LPDWORD) OEMMapMemAddr (dwRegionStart, dwRegionStart + ROM_SIGNATURE_OFFSET + sizeof(ULONG));//我们这里就是0x44偏移处的值 pROMHeader = (ROMHDR *) OEMMapMemAddr (dwRegionStart, dwCacheAddress); //从0x0190DDC8开始,pROMHeader = 0x0190DDC8偏移处对应的虚拟地址0x8190EDC8,通过使用winhex分析后数据如下: //dllfirst = 0x01DA01E3 //dlllast = 0x20000000 //physfirst = 0x80001000 //physlast = 0x81910D94 //nummods = 0x000000AD //ulRAMStart= 0x8C200000 //ulRAMFree = 0x8C229000 //ulRAMEnd = 0x8E000000 //ulCopyEntries = 0x00000001 //ulCopyOffset = 0x80C23DC0 //ulProfileLen = 0x00000000 //ulProfileOffset = 0x00000000 //numfiles = 0x0000005A //ulKernelFlags = 0x00000002 //ulFSRamPercent= 0x80808080 //ulDrivglobStart = 0x00000000 //ulDrivglobLen = 0x00000000 //usCPUType = 0x01C2 //usMiscFlags = 0x0002 //pExtensions = 0x80003210 //ulTrackingStart = 0x00000000 //ulTrackingLen = 0x00000000 //紧跟ROMHDR其后的为nummods个TOCentry结构体 // //00C50FF0 : 74 65 00 00 DC 5F 03 00 6E 6B 2E 65 78 65 00 00 这里6E 6B 2E 65 78 65就是nk.exe //所以可见在nk.nb0中含有nk.exe字符串的偏移位置为C50FF8 //对应的虚拟的地址为0x80001000 + C50FF8 = 0x80C51FF8其在小段存储模式内存中的十六进制数据为F8 1F C5 80 //使用BC3查找该十六进制串 //就在0190DE2B偏移处. // Make sure sure are some modules in the table of contents. // if ((dwNumModules = pROMHeader->nummods) == 0) return NULL; // Locate the table of contents and search for the kernel executable and the TOC immediately follows the ROMHDR. // pTOC = (TOCentry *)(pROMHeader + 1); while(dwNumModules--) { char* pFileName = OEMMapMemAddr(dwRegionStart, (DWORD)pTOC->lpszFileName); //改名字在我编译出的nk.nb0的0190DE2B偏移处,刚好为第1个TOC if (!strcmp((const char *)pFileName, "nk.exe")) {//找到名字为"nk.exe"的TOC,我们可以在这里打印出所有的TOC名字来进一步了解CE内核结构[luther.gliethttp] return ((PVOID)(pROMHeader->pExtensions));//ok,这个该image是合法的nk.nb0,返回pROMHeader->pExtensions数据,这里就是0x80003210 } ++pTOC; } return NULL;//否则NULL } BOOL BP_SetDataPointer (HANDLE hPartition, DWORD dwAddress) { if (hPartition == INVALID_HANDLE_VALUE) return FALSE; RETAILMSG(1,(TEXT("BP_SetDataPointer at 0x%x\r\n"), dwAddress)); PPARTSTATE pPartState = (PPARTSTATE) hPartition; if (dwAddress >= pPartState->pPartEntry->Part_TotalSectors * g_FlashInfo.wDataBytesPerSector) return FALSE; /* typedef struct _PARTSTATE { PPARTENTRY pPartEntry; DWORD dwDataPointer; // Pointer to where next read and write will occur } PARTSTATE, *PPARTSTATE; */ pPartState->dwDataPointer = dwAddress;//对该分区执行读写的逻辑扇区地址,也就是偏移地址[luther.gliethttp] return TRUE; } //将pbBuffer中dwLength个字节数据写到hPartition分区,写入该分区的逻辑扇区地址在BP_SetDataPointer()中已经进行了设置[luther.gliethttp] BOOL BP_WriteData(HANDLE hPartition, LPBYTE pbBuffer, DWORD dwLength) { if (hPartition == INVALID_HANDLE_VALUE) return FALSE; DWORD dwNumBlocks; PPARTSTATE pPartState = (PPARTSTATE) hPartition; DWORD dwNextPtrValue = pPartState->dwDataPointer + dwLength; RETAILMSG (1, (TEXT("WriteData: Start = 0x%x, Length = 0x%x.\r\n"), pPartState->dwDataPointer, dwLength)); if (!pbBuffer || !g_pbBlock || dwLength == 0) { RETAILMSG(1,(TEXT("BP_WriteData Fails. pbBuffer = 0x%x, g_pbBlock = 0x%x, dwLength = 0x%x\r\n"), pbBuffer, g_pbBlock, dwLength)); return(FALSE); } // Check to make sure buffer size is within limits of partition // 检查写入该分区的数据是否超过该扇区所管理的扇区总数[luther.gliethttp] if (((dwNextPtrValue - 1) / g_FlashInfo.wDataBytesPerSector) >= pPartState->pPartEntry->Part_TotalSectors) { RETAILMSG (1, (TEXT("WriteData: trying to write past end of partition.\r\n"))); return FALSE; } // Get the starting physical block // 获取dwDataPointer写入/读取指针所在的块号,经过Log2Phys转换之后dwBlock就是实际的物理块号了[luther.gliethttp] DWORD dwBlock = Log2Phys (pPartState->dwDataPointer / g_FlashInfo.wDataBytesPerSector + pPartState->pPartEntry->Part_StartSector) / g_FlashInfo.wSectorsPerBlock; //计算以该主分区起始地址为基址的块号[luther.gliethttp] DWORD dwOffsetBlock = (pPartState->dwDataPointer + pPartState->pPartEntry->Part_StartSector * g_FlashInfo.wDataBytesPerSector) % g_dwDataBytesPerBlock;//计算待写的指针为该块中第几个字节 // Update the global indicating last written physical address. Global variable is used by the caller. g_dwLastWrittenLoc = dwBlock * g_dwDataBytesPerBlock + dwOffsetBlock;//记录现在写的是第几个字节(物理地址)[luther.gliethttp] // If current pointer is not on a block boundary, copy bytes up to the first block boundary if (dwOffsetBlock) { //待写入sector非block开始边界,那么调整为整block,所以先写入非整block的头部数据,之后数据就是整block开始了,这样对大数据读写可以达到加速效果[luther.gliethttp] if (!ReadBlock(dwBlock, g_pbBlock, g_pSectorInfoBuf)) { RETAILMSG (1, (TEXT("WriteData: failed to read block (0x%x).\r\n"), dwBlock)); return(FALSE); } DWORD dwNumBytesWrite = g_dwDataBytesPerBlock - dwOffsetBlock;//需要向该block写入的多少个字节数据,从dwOffsetBlock开始写[luther.gliethttp] if (dwNumBytesWrite > dwLength)//写入数据大小不会超过该block. dwNumBytesWrite = dwLength; memcpy(g_pbBlock + dwOffsetBlock, pbBuffer, dwNumBytesWrite);//1.拷贝数据 if (!FMD_EraseBlock(dwBlock)) {//2.擦 RETAILMSG (1, (TEXT("WriteData: failed to erase block (0x%x).\r\n"), dwBlock)); return FALSE; } if (!WriteBlock(dwBlock, g_pbBlock, g_pSectorInfoBuf)) {//3.写 RETAILMSG (1, (TEXT("WriteData: failed to write block (0x%x).\r\n"), dwBlock)); return(FALSE); } dwLength -= dwNumBytesWrite;//长度调整 pbBuffer += dwNumBytesWrite;//将数据调整到整块边界[luther.gliethttp] dwBlock++; } //好了,经过上面调整之后,数据指针已经调整为下一个block的边界值了[ltuher.gliethttp] // Compute number of blocks. dwNumBlocks = (dwLength / g_dwDataBytesPerBlock); while (dwNumBlocks--) { // If the block is marked bad, skip to next block. Note that the assumption in our error checking // is that any truely bad block will be marked either by the factory during production or will be marked // during the erase and write verification phases. If anything other than a bad block fails ECC correction // in this routine, it's fatal. if (IS_BLOCK_UNUSABLE(dwBlock))//该物理块是否损坏 { ++dwBlock;//继续下一块 //表示我们跳过该物理块,所以应该++dwNumBlocks;恢复 ++dwNumBlocks; // Compensate for fact that we didn't write any blocks. continue; } if (!ReadBlock(dwBlock, NULL, g_pSectorInfoBuf)) { RETAILMSG (1, (TEXT("WriteData: failed to read block (0x%x).\r\n"), dwBlock)); return(FALSE); } if (!FMD_EraseBlock(dwBlock)) { RETAILMSG (1, (TEXT("WriteData: failed to erase block (0x%x).\r\n"), dwBlock)); return FALSE; } if (!WriteBlock(dwBlock, pbBuffer, g_pSectorInfoBuf)) { RETAILMSG (1, (TEXT("WriteData: failed to write block (0x%x).\r\n"), dwBlock)); return(FALSE); } ++dwBlock; pbBuffer += g_dwDataBytesPerBlock;//ok,开始写吧,开始循环吧[luther.gliethttp] } DWORD dwNumExtraBytes = (dwLength % g_dwDataBytesPerBlock);//看看收尾是否还需要向下一个block开头部分写些数据 if (dwNumExtraBytes) { //还有数据需要写 // Skip bad blocks while (IS_BLOCK_UNUSABLE(dwBlock)) { dwBlock++;//找到紧邻的下一个好块[luther.gliethttp] if (dwBlock >= g_FlashInfo.dwNumBlocks) { // This should never happen since partition has already been created RETAILMSG (1, (TEXT("WriteData: corrupt partition. Reformat flash.\r\n"))); return FALSE; } } if (!ReadBlock(dwBlock, g_pbBlock, g_pSectorInfoBuf)) { RETAILMSG (1, (TEXT("WriteData: failed to read block (0x%x).\r\n"), dwBlock)); return(FALSE); } memcpy(g_pbBlock, pbBuffer, dwNumExtraBytes); //向该block开头追加未写完的跨块的数据[luther.gliethttp] if (!FMD_EraseBlock(dwBlock)) { RETAILMSG (1, (TEXT("WriteData: failed to erase block (0x%x).\r\n"), dwBlock)); return FALSE; } if (!WriteBlock(dwBlock, g_pbBlock, g_pSectorInfoBuf)) { RETAILMSG (1, (TEXT("WriteData: failed to write block (0x%x).\r\n"), dwBlock)); return(FALSE); } } pPartState->dwDataPointer = dwNextPtrValue;//该分区写一次数据发生写入操作时的物理地址,以字节为单位进行计算[luther.gliethttp] return(TRUE); } static DWORD Log2Phys (DWORD dwLogSector) //该dwLogSector数值已经是加过其在主分区的主分区地址了 { // Determine logical block number DWORD dwLogBlock = dwLogSector / g_FlashInfo.wSectorsPerBlock; // Start searching at the MBR block if (g_dwMBRSectorNum == INVALID_ADDR) { RETAILMSG(1, (TEXT("Log2Phys: MBR sector number is invalid.\r\n"))); return INVALID_ADDR; } DWORD dwPhysBlock = g_dwMBRSectorNum / g_FlashInfo.wSectorsPerBlock;//g_dwMBRSectorNum为第一个18块开始之后的第一个好块,对该原因的分析见上面[luther.gliethttp] //这就是和主分区地址相加之后dwLogSector的物理基地址了[luther.gliethttp] if (dwLogBlock >= g_FlashInfo.dwNumBlocks) return INVALID_ADDR; // The physical block will be the number of logical blocks plus the number of bad blocks // starting from the MBR block. while (dwLogBlock--) {//找到dwLogBlock块对应的物理块,坏块将只是简单的对物理块地址进行加1操作,简单的略过,之后计算出最终的物理地址[luther.gliethttp] dwPhysBlock++; while (IS_BLOCK_UNUSABLE (dwPhysBlock) && dwPhysBlock < g_FlashInfo.dwNumBlocks) { dwPhysBlock++; } if (dwPhysBlock >= g_FlashInfo.dwNumBlocks) return INVALID_ADDR; } //打log数据 RETAILMSG(1, (TEXT("Log2Phys: Logical 0x%x -> Physical 0x%x\r\n"), dwLogSector, dwPhysBlock * g_FlashInfo.wSectorsPerBlock + (dwLogSector % g_FlashInfo.wSectorsPerBlock))); //MBR return dwPhysBlock * g_FlashInfo.wSectorsPerBlock + (dwLogSector % g_FlashInfo.wSectorsPerBlock);//返回dwLogSector所在的物理sector地址 //wince对nand的坏块不做任何维护性处理,只是简单的跳过,这和linux下存在BBT(Bad Block Table)坏块表不一样[luther.gliethttp] } //根据位于PLATFORM\SMDK2440A\Src\Inc\oemaddrtab_cfg.inc下的g_oalAddressTable定义的转换表,将虚拟地址转为对应的物理地址 UINT32 OALVAtoPA(VOID *pVA) { OAL_ADDRESS_TABLE *pTable = g_oalAddressTable; UINT32 va = (UINT32)pVA; UINT32 pa = 0; OALMSG(OAL_MEMORY&&OAL_FUNC, (L"+OALVAtoPA(0x%08x)\r\n", pVA)); // Virtual address must be in CACHED or UNCACHED regions. if (va < 0x80000000 || va >= 0xC0000000) { OALMSG(OAL_ERROR, ( L"ERROR:OALVAtoPA: invalid virtual address 0x%08x\r\n", pVA )); goto cleanUp; } // Address must be cached, as entries in OEMAddressTable are cached address. va = va&~OAL_MEMORY_CACHE_BIT; // Search the table for address range while (pTable->size != 0) { if (va >= pTable->CA && va <= pTable->CA + (pTable->size << 20) - 1) { break; } pTable++; } // If address table entry is valid compute the PA if (pTable->size != 0) pa = pTable->PA + va - pTable->CA; cleanUp: // Indicate physical address OALMSG(OAL_MEMORY&&OAL_FUNC, (L"-OALVAtoPA(pa = 0x%x)\r\n", pa)); return pa; } 位于PLATFORM\SMDK2440A\Src\Bootloader\Eboot\util.s汇编中 INCLUDE kxarm.h PHY_RAM_START EQU 0x30000000 VIR_RAM_START EQU 0x8c000000 TEXTAREA LEAF_ENTRY Launch ldr r2, = PhysicalStart //获得PhysicalStart虚拟地址值,在8c038000~范围,可在boot.bib中看到eboot的编译地址[luther.gliethttp] ldr r3, = (VIR_RAM_START - PHY_RAM_START)//计算虚拟地址和物理地址的差值 sub r2, r2, r3 //计算虚拟地址PhysicalStart对应的物理地址值[luther.gliethttp] mov r1, #0x0070 ; Disable MMU mcr p15, 0, r1, c1, c0, 0 //禁用MMU nop mov pc, r2 ; Jump to PStart//MMU禁止,所以跳转到PhysicalStart对应的物理地址继续执行[luther.gliethttp] nop ; MMU & caches now disabled. PhysicalStart mov r2, #0 mcr p15, 0, r2, c8, c7, 0 ; Flush the TLB mov pc, r0 ; Jump to program we are launching. //跳转到dwLaunchAddr登陆地址,之后的进一步内核解压加载等工作就完全由ce内核自身封闭完成了[luther.gliethttp] |