分类: 系统运维
2008-07-14 22:34:28
3GPP长期演进(LTE)项目是近两年来3GPP启动的最大的新技术研发项目,以OFDM/FDMA为核心的技术,与其说是3G技术的“演进”(evolution),不如说是“革命”(revolution)。
这种技术和3GPP2AIE、WiMAX、以及最新出现的IEEE802.20MBFDD/MBTDD等,具有某些“4G”特征,被看作“准4G”技术。
在我国与LTE对应的计划被称为E3G,“863”计划中与B3G对应的Future计划被考虑用于发展E3G,参与LTE的发展工作。
3G LTE的由来
随着PDA和笔记本电脑的发展普及,用户希望能够随时随地上网,一个新的市场---“宽带无线移动接入”正在兴起。宽带无线接入技术面向一个固定和移动通信融合的新市场,它可提供与宽带有线固定接入并行的宽带无线接入业务,支持移动应用。
目前2.5G/3G手机移动数据业务和宽带无线接入业务是两个不同的市场段。宽带无线接入业务采用WiMAX(IEEE802.16d/e)固 定/移动宽带无线城域网技术,核心网是标准的IP网,其无线链路的物理层和MAC层的设计考虑了突发型的分组数据业务的要求,能够自适应无线信道环境,速 率可达几百kbit/s甚至几十Mbit/s。手机数据业务基本是一个蜂窝移动通信网,下载速率在100kbit/s以下。
作为手机数据业务的3G系统在支持IP数据业务时频谱效率低,其面向连接固定带宽的结构不适应突发式IP数据业务的需求。为此,3GPP和 3GPP2都认识到目前的系统提供互联网接入业务的局限性,试图在原来的体系框架内,在下行链路中采用分组接入技术,大幅度提高IP数据下载和流媒体速 率。3GPP在R5系统中增加了高速下行分组接入(HSDPA)(被称为3.5G),速率可以达到10Mbit/s以上,随后进一步在R6中增加高速上行 分组接入(HSUPA),将解决上行链路分组化问题,提高上行速率,进一步引入自适应波束成形和MIMO等天线阵处理技术,可将下行峰值速率提高到 30Mbit/s左右,核心网也在向全IP网演化。
HSDPA和HSUPA被称为3.5G技术,属于中期演化技术,受原体制束缚较大,性能不够理想。3GPP发现在HSDPA和ITU部署的 B3G之间存在一个空档,这正是WiMAX的目标。在一段时间内的宽带无线接入市场上,HSDPA、HSUPA对WiMAX的竞争将处于劣势。
为了提高3G在新兴的宽带无线接入市场的竞争力,摆脱Qualcom的CDMA专利制约,需要发展 LTE(longtermevolution)计划,以填补这一空档。为此,3GPP在2004年底发展了长期演化(LTE)计划,基本思想是采用过去为 B3G或4G发展的技术来发展LTE,使用3G频段占有宽带无线接入市场。2004年12月3GPP雅典会议决定由3GPPRAN工作组负责开展LTE研 究,将于2006年6月完成,2007年6月推出。
LTE概述
3GPP经过激烈的讨论和艰苦的融合,终于在2005年12月选定了LTE的基本传输技术,即下行OFDM;上行SC(单载波)-FDMA。
下行技术的选择没有经过很大的波澜。OFDM是公认的宽带无线通信的首选技术,虽然有个别公司仍试图坚持传统的CDMA技术,但绝大部分公司很早就在采用OFDM作为下行核心技术这一点上达成了共识。
上行传输技术的选择颇费了一番周折,大部分欧美设备商对OFDM的上行峰平比PAPR(将影响手持终端的功放成本和电池寿命)有顾虑,坚持采用 单载波技术(具有较低的PAPR)。虽然一些公司(主要是积极参与WiMAX标准化的公司)认为可以采用某些方法解决OFDM的PAPR的问题,但并没有 说服单载波阵营。
其间还经历了“WiBro/WiMAX试图成为LTETDD技术方案”的插曲,在这一努力宣告失败以后,3GPP基本确定了核心技术的选择---上行OFDM/下行SC-FDMA。
LTE讨论中的一个焦点是是否采用宏分集技术。这个问题看似是物理层技术的取舍,实则影响到网络架构的选择,对LTE/SAE系统的发展方向有 深远的影响。宏分集的基础是软切换,这种CDMA系统的典型技术在FDMA系统中却引出了“弊大还是利大”的争论。3GPP在2005年12月进行了“示 意性”的投票,最后决定LTE(至少在目前)不考虑宏分集技术。
LTE在数据传输延迟方面的要求很高(端到端延迟小于5ms),这一指标要求LTE系统必须采用很小的交织长度(TTI),因此大多数公司建议 采用0.5ms的子帧长度。但是一些研发TDD技术的3GPP成员注意到这种子帧长度和UMTS中现有的两种TDD技术的时隙长度不匹配。例如TD- SCDMA的时隙长度为0.675ms,如果LTETDD系统的子帧长度为0.5ms,则新、老的系统的时隙无法对齐,使得TD-SCDMA系统和 LTETDD系统难以“临频同址”共存。在中国公司的坚持下,3GPP在这个问题上达成一致:基本的子帧长度为0.5ms,但在考虑和TD-SCDMA系 统兼容时可以采用0.675的子帧长度。
尽管LTE的研究工作取得了上述一系列重大的进展,但仍然明显滞后于原工作计划,原本2006年3月前应该完成但未按时完成的工作全部被推迟到 6月前完成,致使所有遗留的研究问题都必须在今后三个月内解决。如果6月不能如期完成这些任务,则研究阶段(SI,原定6月结束)将被迫延长,工作阶段 (WI,原定6月开始)---也即标准的制定---将被迫延后。与LTE相配合的SAE项目SI的截止日期已经推迟到9月。
LTE的框架OFDM/SC-FDMA的基本设计参数初步确定。
OFDM和SC-FDMA(以DFT-S-OFDM为例)的子载波宽度为15kHz,OFDM循环前缀(CP)的长度有长短两种选择,短CP为 基本选项,长CP可用于大范围小区或多小区广播。DFT-S-OFDM的一个子帧由长短两种数据块组成,长块主要用于传送数据,短块主要用于传送导频信 号。
下行主要采用QPSK、16QAM、64QAM三种调制方式,上行主要采用位移BPSK(用于进一步降低DFT-S-OFDM的PAPR)、 QPSK、8PSK和16QAM,另一个正在考虑的降PAPR技术是频域滤波。上下行的最小资源块大小为25个子载波,即375kHz。系统可以采用集中 式(localized)或分散式(distributed)方式将数据映射到资源块上。
在信道编码方面,LTE主要考虑Turbo码,但也正在考虑其他编码方式,如LDPC码。在MIMO方面,LTE的基本MIMO模型是下行 2×2、上行1×2个天线,但同时也正在考虑更多的天线配置(最多4×4)。正在被考虑的MIMO技术包括空间复用(SM)、空分多址(SDMA)、预编 码(Pre-coding)、秩自适应(Rankadaptation)、以及开环发射分集(STTD,主要用于控制信令的传输)等。上行将采用一种特殊 的SDMA技术,即已被WiMAX采用的虚拟(Virtual)MIMO技术。另外,LTE也正在考虑采用小区干扰抑制技术提高小区边缘的数据率和系统容 量等。
在切换方面,除了LTE系统内的切换,也正在考虑不同频率之间和不同系统(如其他3GPP系统、WLAN系统等)的切换。
LTE能带来什么
3GLTE着重考虑的方面主要包括降低时延、提高用户的数据率、增大系统容量和覆盖范围以及降低运营成本等。LTE的目标主要包括以下的内容:
●支持1.25MHz~20MHz带宽;
● 极大提高峰值数据速率(在20MHz带宽下支持下行100Mbps、上行50Mbps的峰值速率);
● 在保持现有基站位置的同时提高小区边缘比特速率;
● 有效提高频谱效率(3GPP版本6的2~4倍);
● 将接入网时延降低到10ms以下;将控制平面时延降低到100ms以内;
● 优化15km/h以下低速用户的性能,能为15-120km/h的移动用户提供高性能的服务,可以支持120-350km/h的用户;
● 吞吐量、频谱效率和移动性指标在5km半径的小区内将得到充分保证,当小区半径增大到30km时,只对以上指标带来轻微的弱化;
● 支持多种载波带宽,以满足配置系统时窄带频谱分配时的灵活性;
● 支持与现有的3G系统和非3GPP规范系统的协同工作:增强的MBMS(Multimedia Broadcast Multicast Service);降低CAPEX(资本支出,Capital Expenditure)和OPEX(运营支出,Operation Expenditure)的成本;
● 降低空中接口和网络架构的成本;
● 实现合理的终端复杂度、成本和耗电;
● 支持增强的IP多媒体子系统(IP Multimedia Sub-system,IMS)和核心网;尽可能保证后向兼容,有效地支持多种业务类型,尤其是分组域(PS-Domain)业务(如VoIP等);
● 优化系统为低移动速度终端提供服务,同时也应支持高移动速度终端;
● 支持增强型的广播多播业务;
● 系统应该能工作在对称和非对称频段;尽可能简化处于相邻频带运营商共存的问题。
为了实现3GLTE的设计目标,着重在空中接口传输技术和接入网结构上对现有3G系统进行改进。
在空中接口方面,一是在下行链路采用能够有效对抗多径衰落、提高频谱效率的OFDM技术;采用自适应链路技术使编码调制参数能够适应无线信道的 变化,以提供更高的频谱效率和更可靠的传输性能;通过在发射端和接收端配置多个天线,从而提高系统的容量、改善系统性能;二是在上行链路采用峰均比 (PAPR)较低的分布式或集中式单载波频分复用提供多址接入;在帧结构和频谱规划上,尽可能与现有3G标准相兼容,以方便终端在不同制式系统中的切换, 减小未来升级带来的投入。
在接入网体系结构方面,设计的主要目标是减小时延和复杂度,使得协议能够有效支持新的物理层传输技术,从而提供更高的用户容量、系统吞吐量和端 到端的服务质量保证。在3GLTE中,最终将要实现所有业务通过分组域传输,如何保证各种分组业务、特别是实时性要求较高的分组业务的服务质量,将成为一 个关键的问题。
LTE还将发展新的网络结构。在原来的3G无线接入网之外,建立一个新的全IP化的RAN和与固网融合的纯IP的核心网,以满足宽带无线接入的 需求,移动通信系统将不再自成系统,真正实现了固定网和移动网的融合。目前LTE工作组正在紧锣密鼓地从需求开始全面开展工作,由于在3GPP内部意见并 没有完全统一,能否达到预定目标还存在一些问题。