全部博文(106)
分类: 网络与安全
2014-09-17 05:38:14
is the premier network analysis tool for information security professionals. Having a solid grasp of this über-powerful application is mandatory for anyone desiring a thorough understanding of . Many prefer to use higher level analysis tools such as , but I believe this to usually be a mistake.
In a discipline so dependent on a true understanding of concepts vs. , it’s important to stay fluent in the underlying mechanics of the TCP/IP suite. A thorough grasp of these protocols allows one to troubleshoot at a level far beyond the average analyst, but mastery of the protocols is only possible through continued exposure to them.
When using a tool that displays network traffic a more natural (raw) way the burden of analysis is placed directly on the human rather than the application. This approach cultivates continued and elevated understanding of the TCP/IP suite, and for this reason I strongly advocate using tcpdump instead of other tools whenever possible.
15:31:34.079416 IP (tos 0x0, ttl 64, id 20244, offset 0, flags [DF], proto: TCP (6), length: 60) source.35970 > dest.80: S, cksum 0x0ac1 (correct), 2647022145:2647022145(0) win 5840 0x0000: 4500 003c 4f14 4000 4006 7417 0afb 0257 E.. 0x0010: 4815 222a 8c82 0050 9dc6 5a41 0000 0000 H."*...P..ZA.... 0x0020: a002 16d0 0ac1 0000 0204 05b4 0402 080a ................ 0x0030: 14b4 1555 0000 0000 0103 0302
Below are a few options (with examples) that will help you greatly when working with the tool. They’re easy to forget and/or confuse with other types of filters, i.e. ethereal, so hopefully this page can serve as a reference for you, as it does me.
First off, I like to add a few options to the tcpdump command itself, depending on what I’m looking at. The first of these is -n, which requests that names are not resolved, resulting in the IPs themselves always being displayed. The second is -X, which displays both hex and ascii content within the packet. The final one is -S, which changes the display of sequence numbers to absolute rather than relative. The idea there is that you can’t see weirdness in the sequence numbers if they’re being hidden from you. Remember, the advantage of using tcpdump vs. another tool is getting manual interaction with the packets.
It’s also important to note that tcpdump only takes the first 68 96 bytes of data from a packet by default. If you would like to look at more, add the -s number option to the mix, where number is the number of bytes you want to capture. I recommend using 0 (zero) for a snaplength, which gets everything. Here’s a short list of the options I use most:
[ The default snaplength as of tcpdump 4.0 has changed from 68 bytes to 96 bytes. While this will give you more of a packet to see, it still won't get everything. Use -s 1514 to get full coverage ]
So, based on the kind of traffic I’m looking for, I use a different combination of options to tcpdump, as can be seen below:
# tcpdump -nS
# tcpdump -nnvvS
# tcpdump -nnvvXS
# tcpdump -nnvvXSs 1514
Here’s a capture of exactly two (-c2) packets (a and ) using some of the options described above. Notice how much we see about each packet.
hermes root # tcpdump -nnvXSs 0 -c2 icmp tcpdump: listening on eth0, link-type EN10MB (Ethernet), 23:11:10.370321 IP (tos 0x20, ttl 48, id 34859, offset 0, flags [none], length: 84) 69.254.213.43 > 72.21.34.42: icmp 64: echo request seq 0 0x0000: 4520 0054 882b 0000 3001 7cf5 45fe d52b E..T.+..0.|.E..+ 0x0010: 4815 222a 0800 3530 272a 0000 25ff d744 H."..50'..%..D 0x0020: ae5e 0500 0809 0a0b 0c0d 0e0f 1011 1213 .^.............. 0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 .............!"# 0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()+,-./0123 0x0050: 3435 3637 4567 23:11:10.370344 IP (tos 0x20, ttl 64, id 35612, offset 0, flags [none], length: 84) 72.21.34.42 > 69.254.213.43: icmp 64: echo reply seq 0 0x0000: 4520 0054 8b1c 0000 4001 6a04 4815 222a E..T....@.j.H." 0x0010: 45fe d52b 0000 3d30 272a 0000 25ff d744 E..+..=0'..%..D 0x0020: ae5e 0500 0809 0a0b 0c0d 0e0f 1011 1213 .^.............. 0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 .............!"# 0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()+,-./0123 0x0050: 3435 3637 4567 2 packets captured 2 packets received by filter 0 packets dropped by kernel hermes root #
Expressions allow you to trim out various types of traffic and find exactly what you’re looking for. Mastering the expressions and learning to combine them creatively is what makes one truly powerful with tcpdump. There are three main types of expression: type, dir, and proto.
Type options are host, net, and port. Direction is indicated by dir, and there you can have src, dst, src or dst, and src and dst. Here are a few that you should definitely be comfortable with:
# tcpdump host 1.2.3.4
# tcpdump src 2.3.4.5
# tcpdump dst 3.4.5.6
# tcpdump net 1.2.3.0/24
# tcpdump icmp
# tcpdump port 3389
# tcpdump src port 1025 # tcpdump dst port 389
# tcpdump src port 1025 and tcp
# tcpdump udp and src port 53
You also have the option to filter by a range of ports instead of declaring them individually, and to only see packets that are above or below a certain size.
[ You can use the symbols for less than, greater than, and less than or equal / greater than or equal signs as well. ]
// filtering for size using symbolstcpdump allows you to send what you’re capturing to a file for later use using the -w option, and then to read it back using the -r option. This is an excellent way to capture raw traffic and then run it through various tools later.
The traffic captured in this way is stored in tcpdump format, which is pretty much universal in the network analysis space. This means it can be read in by all sorts of tools, including , , etc.
# tcpdump -s 1514 port 80 -w capture_file
Then, at some point in the future, you can then read the traffic back in like so:
# tcpdump -r capture_file
Expressions are nice, but the real magic of tcpdump comes from the ability to combine them in creative ways in order to isolate exactly what you’re looking for. There are three ways to do combinations, and if you’ve studied computers at all they’ll be pretty familar to you:
# TCP traffic from 10.5.2.3 destined for port 3389
tcpdump -nnvvS and src 10.5.2.3 and dst port 3389
# Traffic originating from the 192.168 network headed for the 10 or 172.16 networks
tcpdump -nvX src net 192.168.0.0/16 and dst net 10.0.0.0/8 or 172.16.0.0/16
# Non-ICMP traffic destined for 192.168.0.2 from the 172.16 network
tcpdump -nvvXSs 1514 dst 192.168.0.2 and src net and not icmp
# Traffic originating from Mars or Pluto that isn’t to the SSH port
tcpdump -vv src mars and not dst port 22
As you can see, you can build queries to find just about anything you need. The key is to first figure out precisely what you’re looking for and then to build the syntax to isolate that specific type of traffic.
Also keep in mind that when you’re building complex queries you might have to group your options using single quotes. Single quotes are used in order to tell tcpdump to ignore certain special characters — in this case the “( )” brackets. This same technique can be used to group using other expressions such as host, port, net, etc. Take a look at the command below:
# Traffic that’s from 10.0.2.4 AND destined for ports 3389 or 22 (incorrect)
tcpdump src 10.0.2.4 and (dst port 3389 or 22)
If you tried to run this otherwise very useful command, you’d get an error because of the parenthesis. You can either fix this by escaping the parenthesis (putting a \ before each one), or by putting the entire command within single quotes:
# Traffic that’s from 10.0.2.4 AND destined for ports 3389 or 22 (correct)
tcpdump ‘src 10.0.2.4 and (dst port 3389 or 22)’
You can also filter based on specific portions of a packet, as well as combine multiple conditions into groups. The former is useful when looking for only SYNs or RSTs, for example, and the latter for even more advanced traffic isolation.
[ Hint: An anagram for the TCP flags: Unskilled Attackers Pester Real Security Folk ]
Show me all URGENT (URG) packets…
# tcpdump ‘tcp[13] & 32!=0‘
Show me all ACKNOWLEDGE (ACK) packets…
# tcpdump ‘tcp[13] & 16!=0‘
Show me all PUSH (PSH) packets…
# tcpdump ‘tcp[13] & 8!=0‘
Show me all RESET (RST) packets…
# tcpdump ‘tcp[13] & 4!=0‘
Show me all SYNCHRONIZE (SYN) packets…
# tcpdump ‘tcp[13] & 2!=0‘
Show me all FINISH (FIN) packets…
# tcpdump ‘tcp[13] & 1!=0‘
Show me all SYNCHRONIZE/ACKNOWLEDGE (SYNACK) packets…
# tcpdump ‘tcp[13]=18‘
[ Note: Only the PSH, RST, SYN, and FIN flags are displayed in tcpdump's flag field output. URGs and ACKs are displayed, but they are shown elsewhere in the output rather than in the flags field ]
Keep in mind the reasons these filters work. The filters above find these various packets because tcp[13] looks at offset 13 in the , the number represents the location within the byte, and the !=0 means that the flag in question is set to 1, i.e. it’s on.
As with most powerful tools, however, there are multiple ways to do things. The example below shows another way to capture packets with specific TCP flags set.
Capture TCP Flags Using the tcpflags Option…
# tcpdump ‘tcp[tcpflags] & & tcp-syn != 0‘
Finally, there are a few quick recipes you’ll want to remember for catching specific and specialized traffic, such as IPv6 and malformed/likely-malicious packets.
IPv6 traffic
# tcpdump ip6
Packets with both the RST and SYN flags set (why?)
# tcpdump ‘tcp[13] = 6′
Traffic with the ‘Evil Bit’ Set
# tcpdump ‘ip[6] & 128 != 0‘
Well, this primer should get you going strong, but should always be handy for the most advanced and one-off usage scenarios. I truly hope this has been useful to you, and feel free to if you have any questions. ::