上一篇文章《在Linux程序中输出函数调用栈》,讲述了在Linux中如何利用backtrace获取调用栈,本篇文章主要介绍一下获取函数调用栈的原理,并给出相应的实现方式。
要了解调用栈,首先需要了解函数的调用过程,下面用一段代码作为例子:
#include
int add(int a, int b) {
int result = 0;
result = a + b;
return result;
}
int main(int argc, char *argv[]) {
int result = 0;
result = test(1, 2);
printf("result = %d \r\n", result);
return 0;
}
使用gcc编译,然后gdb反汇编main函数,看看它是如何调用add函数的:
(gdb) disassemble main
Dump of assembler code for function main:
0x08048439 <+0>: push %ebp
0x0804843a <+1>: mov %esp,%ebp
0x0804843c <+3>: and $0xfffffff0,%esp
0x0804843f <+6>: sub $0x20,%esp
0x08048442 <+9>: movl $0x0,0x1c(%esp) # 给result变量赋0值
0x0804844a <+17>: movl $0x2,0x4(%esp) # 将第2个参数压栈(该参数偏移为esp+0x04)
0x08048452 <+25>: movl $0x1,(%esp) # 将第1个参数压栈(该参数偏移为esp+0x00)
0x08048459 <+32>: call 0x804841c # 调用add函数
0x0804845e <+37>: mov %eax,0x1c(%esp) # 将add函数的返回值赋给result变量
0x08048462 <+41>: mov 0x1c(%esp),%eax
0x08048466 <+45>: mov %eax,0x4(%esp)
0x0804846a <+49>: movl $0x8048510,(%esp)
0x08048471 <+56>: call 0x80482f0
0x08048476 <+61>: mov $0x0,%eax
0x0804847b <+66>: leave
0x0804847c <+67>: ret
End of assembler dump.
可以看到,参数是在add函数调用前压栈,换句话说,参数压栈由调用者进行,参数存储在调用者的栈空间中,下面再看一下进入add函数后都做了什么:
(gdb) disassemble add
Dump of assembler code for function add:
0x0804841c <+0>: push %ebp # 将ebp压栈(保存函数调用者的栈基址)
0x0804841d <+1>: mov %esp,%ebp # 将ebp指向栈顶esp(设置当前函数的栈基址)
0x0804841f <+3>: sub $0x10,%esp # 分配栈空间(栈向低地址方向生长)
0x08048422 <+6>: movl $0x0,-0x4(%ebp) # 给result变量赋0值(该变量偏移为ebp-0x04)
0x08048429 <+13>: mov 0xc(%ebp),%eax # 将第2个参数的值赋给eax(准备运算)
0x0804842c <+16>: mov 0x8(%ebp),%edx # 将第1个参数的值赋给edx(准备运算)
0x0804842f <+19>: add %edx,%eax # 加法运算(edx+eax),结果保存在eax中
0x08048431 <+21>: mov %eax,-0x4(%ebp) # 将运算结果eax赋给result变量
0x08048434 <+24>: mov -0x4(%ebp),%eax # 将result变量的值赋给eax(eax将作为函数返回值)
0x08048437 <+27>: leave # 恢复函数调用者的栈基址(pop %ebp)
0x08048438 <+28>: ret # 返回(准备执行下条指令)
End of assembler dump.
进入add函数后,首先进行的操作是将当前的栈基址ebp压栈(此栈基址是调用者main函数的),然后将ebp指向栈顶esp,接下来再进行函数内的处理流程。函数结束前,会将函数调用者的栈基址恢复,然后返回准备执行下一指令。这个过程中,栈上的空间会是下面的样子:
可以发现,每调用一次函数,都会对调用者的栈基址(ebp)进行压栈操作,并且由于栈基址是由当时栈顶指针(esp)而来,会发现,各层函数的栈基址很巧妙的构成了一个链,即当前的栈基址指向下一层函数栈基址所在的位置,如下图所示:
了解了函数的调用过程,想要回溯调用栈也就很简单了,首先获取当前函数的栈基址(寄存器ebp)的值,然后获取该地址所指向的栈的值,该值也就是下层函数的栈基址,找到下层函数的栈基址后,重复刚才的动作,即可以将每一层函数的栈基址都找出来,这也就是我们所需要的调用栈了。
下面是根据原理实现的一段获取函数调用栈的代码,供参考。
#include
/* 打印调用栈的最大深度 */
#define DUMP_STACK_DEPTH_MAX 16
/* 获取寄存器ebp的值 */
void get_ebp(unsigned long *ebp) {
__asm__ __volatile__ (
"mov %%ebp, %0"
:"=m"(*ebp)
::"memory");
}
/* 获取调用栈 */
int dump_stack(void **stack, int size) {
unsigned long ebp = 0;
int depth = 0;
/* 1.得到首层函数的栈基址 */
get_ebp(&ebp);
/* 2.逐层回溯栈基址 */
for (depth = 0; (depth < size) && (0 != ebp) && (0 != *(unsigned long *)ebp) && (ebp != *(unsigned long *)ebp); ++depth) {
stack[depth] = (void *)(*(unsigned long *)(ebp + sizeof(unsigned long)));
ebp = *(unsigned long *)ebp;
}
return depth;
}
/* 测试函数 2 */
void test_meloner() {
void *stack[DUMP_STACK_DEPTH_MAX] = {0};
int stack_depth = 0;
int i = 0;
/* 获取调用栈 */
stack_depth = dump_stack(stack, DUMP_STACK_DEPTH_MAX);
/* 打印调用栈 */
printf(" Stack Track: \r\n");
for (i = 0; i < stack_depth; ++i) {
printf(" [%d] %p \r\n", i, stack[i]);
}
return;
}
/* 测试函数 1 */
void test_hutaow() {
test_meloner();
return;
}
/* 主函数 */
int main(int argc, char *argv[]) {
test_hutaow();
return 0;
}
源文件下载:
执行gcc dumpstack.c -o dumpstack编译并运行,执行结果如下:
Stack Track:
[0] 0x8048475
[1] 0x8048508
[2] 0x804855c
[3] 0x804856a