Chinaunix首页 | 论坛 | 博客
  • 博客访问: 492758
  • 博文数量: 133
  • 博客积分: 1235
  • 博客等级: 少尉
  • 技术积分: 1201
  • 用 户 组: 普通用户
  • 注册时间: 2010-09-08 19:59
文章分类

全部博文(133)

文章存档

2023年(12)

2022年(3)

2018年(2)

2017年(4)

2016年(4)

2015年(42)

2014年(1)

2013年(12)

2012年(16)

2011年(36)

2010年(1)

分类: 其他平台

2015-04-29 15:11:12

http://www.cnblogs.com/zhenjing/archive/2011/07/04/filelock.html

缘起

因项目需要,自行设计一套通用的文件读写锁,要求该机制能用于本地文件系统和NFS文件系统。

内核的文件数据结构

内核中有3个数据结构和文件直接相关,分别是:file descriptor table, file table and i-node table。其中file descriptor table是进程私有的;file table和inode table是独立于进程的。进程内部的文件描述符fd只在该进程有才有意义。File table可在进程内共享,也可在进程间共享。I-node table则在整个系统中共享。

文件描述符fd可由Open,dup和fork等操作创建;file table只能有open创建;i-node table在创建真实文件是创建。

摘自Apue-3.12

 

摘自Apue-14.3

 

摘自TLPI-5.4

对TLPI-5.4的图作如下说明:

1) A中的fd 1和20共享file table记录,可认为fd 20复制于fd 1(可也反过来)

2) A和B的fd 2共享file table记录,可认为B由A fork产生,B重定向fd 0和1。

3) File table中的0和86指向相同的文件,这意味着0和86由open相同的文件。

理解这个3个数据结构的关系大体可知道linux是如何管理文件。Stat和fcntl可获取或者修改相关的文件信息,结合这两个接口将有助于理解这3个文件结构。

文件记录锁fcntl

文件记录锁位于i-node table这个结构中,使用PID作为锁拥有者的标识。这使其拥有如下特点:

1) 记录锁采用(PID, start,end)三元组作为锁标识,一个文件可拥有多个记录锁,同一区域只允许有一个记录锁。

2) 当进程终止(正常/不正常),该进程拥有的所有记录锁都将释放。

3) 同一个进程中,指向同一文件(i-node)的fd都可以操作该文件上的记录锁:如释放、修改等。显式调用F_UNLCK和close(fd)都将释放锁,close将释放整个文件中该进程拥有的所有记录锁。

4) 记录锁不被fork的子进程继承(PID不同)。

5) 记录锁的类型转换、改变锁范围等操作均为原子的。

6) 未设置FD_CLOEXEC时,记录锁将被exec后的进程继承(PID相同)。

7) 记录锁对文件打开mode有要求:加读锁要求fd有读权限;加写锁要求fd有写权限。

fcntl的使用示例和测试代码:


文件锁flock

文件锁位于file table这个数据结构中,一个文件可有多个file table entry(多次open),一个entry有且只有一个文件锁(共享/独占)。文件锁有如下特点:

1)每个file table entry有且只有一个文件锁,fork和dup后的fd指向同一个file table entry,故拥有同一个文件锁。这意味着文件锁可被fork后的子进程继承。

2)显式调用LOCK_UN将释放该file table entry的文件锁;当所有指向同一file table entry的fd关闭后,该file table entry将被释放,其上的文件锁也将随之释放。

3)一个进程中多次打开同一文件将创建多个file table entry,这意味着这些entry的文件锁是独立的。

4)一个文件只能有一个文件锁,锁类型可转换,flock不保证锁类型转换是原子操作。

5)未设置FD_CLOEXEC时,记录锁将被exec后的进程继承(file entry未释放)。

6)文件锁对文件的读写权限没有要求。

flock的使用示例和测试代码:

NFS文件锁-fcntl

NFS3支持文件记录fcntl和O_EXCL创建文件,但不支持文件锁。NFS的文件锁是通过Network Lock Manager(lockd后台进程)这个独立程序实现的,NFS server本身依旧是无状态的,所有的锁状态均由NLM维护。从NFS4开始,锁协议融入NFS自身的协议中,锁状态由NFS server维护,这意味这NFS4是有状态的,未简化锁设计,采用租赁锁。

文件读写锁

双文件读写锁机制

双文件读写锁机制采用目标文件(datafile)和“众所周知”的临时写文件(datafile.lock),依赖于新文件的原子创建来保证进程间的互斥写操作。其本质:新文件的原子创建模拟写锁,保证有且只有一个进程能够进行写操作;多进程直接读数据,并依赖操作系统保证打开后的文件在fd关闭之前一直可读的技巧保证读不会因文件删除而中断。

缺点:1) 不支持部分修改;2)某个进程拥有“读锁”,无法保证后续进程也将拿到“读锁”(文件被移除)。3)临时文件(锁文件)遗留问题。如果临时文件(datafile.lock)未能在写操作终止后(正常/不正常)被移除,那么将阻塞其他写进程。这个问题很棘手。可通过atexit()或者顶层脚本部分解决,但两者都很难避免删除的文件不是另一个写进程新创建的临时文件。

双文件读写锁机制的程序流程如下:

 

改进的双文件读写锁机制

改进的双文件读写锁机制采用文件硬链接数来模拟“读锁”,硬链接大于1表示有进程拥有目标文件的读锁。

 

改进的双文件机制和实际的“读写锁”吻合,只有当“读锁”全部被释放后,进程才能拿到“写锁”。但是仍然无法解决“锁文件遗留问题”。

上面的流程可进一步简化,既然建立link必不可少,可让读进程直接读link文件,通过link()的原子操作保证获取“读锁”的原子性,从而简化读流程。

替代的类文件锁技术

open(file, O_CREAT | O_EXCL,...) plus unlink(file)

注释:

open(file, O_CREAT | O_EXCL,...)获取锁;unlink(file)释放锁。

处理遗留锁文件的一个较可靠的办法:将PID写入锁文件;原子创建失败后,读取PID,kill(pid,0)检查PID是否有效,若无效,删除后,重新原子创建。(删除和创建存在“竞态”,无法避免!)

link(file, lockfile) plus unlink(lockfile)

用法:link和unlink均为原子的。每个需要加锁的进程,先创建一个临时文件,并link一个“众所周知”的“锁文件”到该目标文件。Link成功获取锁;unlink释放锁。

open(file, O_CREAT | O_TRUNC | O_WRONLY, 0) plus unlink(file)

用法:当使用O_TRUNC | O_WRONLY去打开一个已存在的文件,若该进程不具有写权限时,open将失败。

总结

依赖于“锁文件”的替代文件锁机制都无法真正可靠地解决“锁文件”遗留问题。这在实际工程项目会成为一个很棘手的问题。在未找到可靠解决“锁文件”遗留问题的方案之前,还是尽可能地使用系统自带的文件锁机制(flock/fcntl)。

参考书籍:

高级UNIX环境编程

The Linux Programming Interface

阅读(1143) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~