Linux设备驱动开发学习笔记
内核版本:2.6.x
Major and Minor Numbers
内核通过major号来识别设备,下面的命令列出的是系统上所连接的设备及其major number,第一列就是设备的major number.
$ cat /proc/devices
Character devices:
1 mem
4 /dev/vc/0
4 tty
5 /dev/tty
5 /dev/console
5 /dev/ptmx
7 vcs
10 misc
13 input
14 sound
116 alsa
128 ptm
136 pts
180 usb
195 nvidia
226 drm
254 devfs
Block devices:
3 ide0
22 ide1
$ls -l /dev
..............
crw------- 1 root root 119, 0 Apr 24 11:34 vmnet0
crw------- 1 root root 119, 1 Apr 24 11:34 vmnet1
crw------- 1 root root 119, 2 Apr 24 11:34 vmnet2
crw------- 1 root root 119, 3 Apr 24 11:34 vmnet3
crw------- 1 root root 119, 4 Apr 24 11:34 vmnet4
crw------- 1 root root 119, 5 Apr 24 11:34 vmnet5
crw------- 1 root root 119, 6 Apr 24 11:34 vmnet6
crw------- 1 root root 119, 7 Apr 24 11:34 vmnet7
crw------- 1 root root 119, 8 Apr 24 11:34 vmnet8
..............
可以看到他们的major number 是119,但他们的minor number不同.分别是0~8.
内核只关心major number,而minor number 是由设备驱动来区别的.
内核内部,类型dev_t存储着设备号,且定义了一组宏来维护它.
MKDEV(int major,int minor);//return dev_t
MAJOR( dev_t dev);
MINOR (dev_t dev);
比如,我们用mknod建立一个新的设备文件
#mknod /dev/newchr c 50 0
建立/dev/newchr设备文件,类型是c(char,字符型),major number 是50,minor number 是0.mknod的用法可以用man来查看.
在内核内部,我们用上面的宏来维护:
dev_t mydev;
mydev=MKDEV(50,0);
我们也可以由mydev得到major 和minor number.
int major,minor;
major=MAJOR(mydev);
minor=MINOR(mydev);
注册设备号
我们定义好major和minor number 后就可以在内核中注册一个设备了.注册一个字符设备需要用到下面几个函数:
int register_chrdev_region(dev_t first,unsigned int count,
char *name);
first是你要注册的设备号范围的开始(其中minor号一般设置为0),count是你所申请的连续设备号的总数.name是设备的名称.它会在/proc/devices中出现.
int alloc_chrdev_region(dev_t *dev,unsigned int firstminor,
unsigned int count,char *name);
这个函数是用来动态分配设备号的.有余开发者不知道所要用的major号是多少,便让内核动态分配一个.参数dev是个output-only参数.
void unregister_chrdev_region(dev_t first,unsigned int count);
一般在模块清除函数中调用.
重要的数据结构
正如你所想象的,注册只是第一步,后面还有更重要的部分,其中一个就是我们一开始提到的如何实现open/read/write/ioctl等用户接口.
首先看一下几个重要的数据结构:
file_operations,file,inode
中定义了这三个结构.
struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
int (*dir_notify)(struct file *filp, unsigned long arg);
}
file_operations结构定义了一组函数指针,每一个打开的文件(用struct file表示)和他自己的一组函数(包含在一个叫f_op的域中,它指向一个struct file_operations结构)相联系.这些操作都是来实现系统调用的,所以才被命名为open,read,等等.对于那些不需要的功能(比如你的 设备不需要write功能,即不需要向设备写数据),可以给write指针付NULL.
struct file {
struct list_head f_list;
struct dentry *f_dentry;
struct vfsmount *f_vfsmnt;
struct file_operations *f_op;
atomic_t f_count;
unsigned int f_flags;
mode_t f_mode;
int f_error;
loff_t f_pos;
struct fown_struct f_owner;
unsigned int f_uid, f_gid;
struct file_ra_state f_ra;
unsigned long f_version;
void *f_security;
/* needed for tty driver, and maybe others */
void *private_data;
#ifdef CONFIG_EPOLL
/* Used by fs/eventpoll.c to link all the hooks to this file */
struct list_head f_ep_links;
spinlock_t f_ep_lock;
#endif /* #ifdef CONFIG_EPOLL */
struct address_space *f_mapping;
};
每个打开的文件对应一个struct file.它在被打开时由内核创建,并传给它所有可以操作该文件的函数,到文件被关闭时才被删除.
The inode Structure.
Inode结构是用来在内核内部表示文件的.同一个文件可以被打开好多次,所以可以对应很多struct file,但是只对应一个struct inode.该结构里面包含了很多信息,但是,驱动开发者只关心里面两个重要的域:
dev_t i_rdev;//含有真正的设备号
struct cdev *i_cdev;//struct cdev是内核内部表示字符设备的结构.
注册字符设备
可以有两种方法注册
struct cdev *my_cdev=cdev_alloc();
my_cdev->ops=&my_fops;
或
void cdev_init(struct cdev *cdev,struct file_operations *fops);
注册完后还要通知内核一声,通过调用
int cdev_add(struct cdev *dev,dev_t num,unsigned int count);
count 一般是 1.
删除字符设备,调用
void cdev_del(struct cdev *dev);
说了那么多,现在可以来个例子了.
#include
#include
#include
#include
#include
#include
#define DP_MAJOR 50
#define DP_MINOR 0
static int char_read(struct file *filp,char __user *buffer,size_t,loff_t *);
static int char_open(struct inode *,struct file *);
static int char_write(struct file *filp,const char __user *buffer,size_t ,loff_t*);
static int char_release(struct inode *,struct file *);
static char *arr,*p;
static int chropen;
struct cdev *my_cdev;
static int len;
struct file_operations Fops = {
.read = char_read,
.write = char_write,
.open = char_open,
.release = char_release, /* a.k.a. close */
};
static int __init char_init(void)
{
printk(KERN_ALERT"Initing......\n");
dev_t dev;
dev=MKDEV(DP_MAJOR,DP_MINOR);
my_cdev = cdev_alloc( );
arr=kmalloc(1024,GFP_KERNEL);
if(arr==NULL){
printk(KERN_ALERT"kmalloc error\n");
}
sprintf(arr,"Hello,Pid=%d\n",current->pid);
if(my_cdev==NULL){
return -1;
}
if(register_chrdev_region(dev,10,"dpchr")<0){
printk(KERN_ALERT"Register char dev error\n");
return -1;
}
chropen=0;
len=0;
my_cdev->ops = &Fops;
cdev_init(my_cdev,&Fops);
cdev_add(my_cdev,dev,1);
return 0;
}
static int char_open(struct inode *inode,struct file *file)
{
if(chropen==0)
chropen++;
else{
printk(KERN_ALERT"Another process open the char device\n");
return -1;
}
p=arr;
try_module_get(THIS_MODULE);
return 0;
}
static int char_release(struct inode *inode,struct file *file)
{
chropen--;
module_put(THIS_MODULE);
return 0;
}
static int char_read(struct file *filp,char __user *buffer,size_t length,loff_t *offset)
{
int i=0;
if(*p=='\0')
return 0;
while(length&&*p){
put_user(*(p++),buffer++);
length--;
i++;
}
return i;
}
static int char_write(struct file *filp,const char __user *buffer,size_t length,loff_t *offset)
{
int i;
for(i=0;i get_user(p,buffer+i);
p=0;
len=i;
return i;
}
static void module_close()
{
len=0;
printk(KERN_ALERT"Unloading..........\n");
kfree(arr);
unregister_chrdev_region(MKDEV(DP_MAJOR,DP_MINOR),10);
cdev_del(my_cdev);
}
module_init(char_init);
module_exit(module_close);
需要注意的是,用户调用read/write时返回的值便是我们实现的函数(char_read,char_write)返回的值,所以我们不能随便的返 回一个值(比如,0,用户的read/write返回0,所以会认为出错了,然后并没有出错,只是我们返回了一个错误的值而已.