Chinaunix首页 | 论坛 | 博客
  • 博客访问: 758707
  • 博文数量: 112
  • 博客积分: 2581
  • 博客等级: 少校
  • 技术积分: 1229
  • 用 户 组: 普通用户
  • 注册时间: 2008-03-18 13:05
个人简介

你撒下一粒善良的种_子, 会在暗中蔓延出一片灿烂的花海

文章分类

全部博文(112)

文章存档

2019年(4)

2018年(2)

2017年(1)

2016年(1)

2015年(3)

2014年(6)

2013年(6)

2012年(2)

2011年(20)

2010年(16)

2009年(28)

2008年(23)

分类: LINUX

2011-03-14 14:15:17

高速 DAC,比如模拟器件(Analog Devices)公司的 AD9776/78/79 TxDAC 系列,能提供差分输出,但对于低端交流电应用或高精度电平设置应用,配备差分转换电路的单端电流输出 DAC 提供了一种新颖的方法来生成差分波形控制功能。图 1 中的基本电路组合了电流输出 DAC(即 IC1,如 8 位AD5424 DAC)和一个单端至差分运算放大级IC2、IC3A、IC3B——来产生要求的输出。对于双电源应用,可选择 DAC 的单极工作模式来达到 DAC 的最优性能。DAC 利用单一运算放大器提供了双象限倍增或单极输出电压摆动。DAC 的输出需要缓冲器,这是因为对施加到 DAC 输入端的代码进行改变,就会改变它的输出阻抗。


  以下公式定义了电路的输出电压:VOUT=-VREF×(D/2N),其中 N 定义了输入位数,VREF 是基准电压,D 是二进制代码的十进制等价值。为了生成正共模电压,可把负电压用作 DAC 的基准电压。DAC 的内部设计可容纳 -10 V ~ +10V 的交流电基准输入信号。在这种模式中,当您依靠一个 5V 电源对DAC 供电时,它为四分之一满刻度代码变化提供 5Msps 最大更新速率。只有当您的应用需要可调增益时,才使用电阻器 R1 和 R2。

  单端至差分级由两个交叉耦合运算放大器组成,电阻器 R5 和 R6 配置成一个单位增益跟随器。为了实现对称电路,各输出还作为单位增益反相器通过 R7 和 R8 互相驱动。向运算放大器 IC2 的正端子施加的电压设定了电路的共模电压。电阻器 R3 和 R4 控制着差分电压的大小。请注意应用的输出负载要求以及运算放大器的输入电压和输出电压能力。

  对于单电源应用,可在反向模式中使用电流输出 DAC,其中,把基准电压 VIN 施加到 DAC的IOUT1引脚,并从 DAC 的 VREF 端获得输出电压(图2)。在这种配置中,正基准电压产生正输出电压。该电路不使用 DAC 的反馈电阻器 RFB,并且它与 IOUT1 之间的连接防止了杂散电容效应。DAC 的基准输入有一个阻抗,该阻抗随施加的代码而变化,因此需要一个低阻抗源。


   请注意:DAC梯型电路中的各开关不再具有相同的源极至漏极驱动电压,这又把输入电压限制在低电压。结果,各开关的接通电阻各有不同,并降低了DAC的 线性度。另外,该模式还把最高更新速率限制在1.5Msps。您可以使用双运算放大器的若干部分来缓冲 DAC 的输入,并放大 DAC 的输出电压(图 3)。该电路的预定应用决定了您对配套放大器的选择。对于低速的精密应用,运算放大器需要很低的输入偏置电流和输入偏移电压,以避免 DAC 的 DNL(差分非线性)性能的恶化。例如,AD8628 在室温和5mV最高输入偏移电压下提供 100pA最大偏置电流。运算放大器的低频噪声在精密电平设置应用中很重要,而AD8628规定的0.1 Hz ~ 10Hz噪声低于 0.5mV p-p。它的满摆幅输入和输出使它非常适用于单电源电路。


   对于高速系统应用,运算放大器的转换率不得主导 DAC 的转换率。运算放大器的带宽必须宽到足以驱动反馈负载,并且不得限制电路的总带宽,而 DAC的输出电压稳定时间应该决定电路的最高更新速率。图1和图2中的AD8042提供170MHz 带宽和 225V/ms转换率,使它很容易实现这些结果。其它高速运算放大器,如 AD8022、AD8023、AD8066,在本应用中也工作得很好。

   DAC 只消耗 0.4mA 电源电流,因此运算放大器主导着电路的功耗。为了尽量缩小电路在 印制电路板上的占位面积,您可用单一 AD8044 四芯运算放大器来代替图 2 中的所有四个运算放大器。在 1.4V 共模电压和 0.6V 差分信号下,数字化 8 点正弦波的单端至差分转换产生了差分输出(图 3)。



电路功能与优势

采用单端信号走线时,来自信号源的一条导线贯穿于整个系统,直至数据采集接口。所测量的电压为信号与地的差值。遗憾的是,因为接地阻抗不可能绝对为0,所 以“地”在不同的地方可能具有不同的电平。这样,使用单端信号走线就可能导致误差,特别是当信号走线较长,且地电流含有较大数字瞬变时。单端信号走线对噪 声拾取敏感,因为它会起到天线的作用,拾取电活动的噪声。对于单端输入,无法区分信号与干扰噪声,大部分接地和噪声问题都通过差分信号技术来解决。

采用差分信号走线时,两条信号线从信号源接到数据采集接口,这就可以解决单端连接所引起的上述问题。发送接地层与接收接地层之间的噪声充当一个共模信号, 因而得以大大衰减。使用双绞线会使噪声拾取表现为共模信号,它在接收端也会大大衰减。差分传输还有一个优势,即差分信号的幅度是等效单端信号的两倍,因此 噪声抗扰度更高。

本文所述电路是一个差分驱动器;经过调整后,它既可用于电压输出DAC,也可用于电流输出DAC。该驱动器基于双通道运算放大器, 配置为交叉耦合差分驱动器。AD8042具有一个轨到轨输出级和一个输入级,输出级在任一电源轨的30 mV范围内工作,输入级则可在负电源(本电路中为地)以下200 mV和正电源的1 V范围内工作。此外,AD8042具有160 MHz带宽和快速建立时间,堪称输出驱动器的理想选择。

电压输出DAC为nanoDAC®系列的12位,它采用10引脚MSOP封装。

针对从工业CMOS DAC产生差分信号的应用,这两个电路代表一种高性价比、低功耗、小尺寸解决方案。两个电路均采用+5 V单电源供电。

图1. 用于电压输出DAC AD5620的差分驱动器
电路描述

图1所示电路采用+5 V单电源供电,并使用电压输出DAC AD5620。DAC的输入由一个SPI端口控制。DAC的输出摆幅为0 V至+5 V。DAC片内基准电压源(+2.5 V)用来设置AD8042差分驱动器电路的共模电压。该基准电压源的温度系数为5 ppm/°C。V−端的输出是以+2.5 V共模电压为中心的反向DAC输出。反馈网络和U2-B迫使V+端的电压与V−端的电压相位相差180°。该驱动器输入端和输出端的波形如图2所示。差分 输出限制在各电源轨的大约30 mV范围内;因此,如果DAC在这些区间工作,将会发生一定的削波。

图2. 图1电路在100 kSPS更新速率时的VIN、V+和V−

图3所示电路也采用+5 V单电源供电,并使用电流输出DAC AD5443,其IOUT2引脚接+2.5 V,VREF引脚接地。4.096 V精密基准电压源 和一个分压器网络,用来产生该DAC IOUT2引脚所用的+2.5 V电压以及输出驱动器级所用的+3.75 V共模电压。

图3. 用于电流输出DAC AD5443的差分驱动器

在这些条件下,U2-A的输出摆幅为+2.5 V至+5 V。该驱动器的差分输出限制在正电源轨的大约30 mV范围内;因此,如果DAC在该区间工作,将会发生一定的削波。图4显示图3的输出驱动器级对应的输入和输出波形。

图4. 图3电路在100 kSPS更新速率时的VIN、V+和V−

该单端差分转换器级的带宽典型值为10 MHz。不过,最大输出频率由DAC更新速率控制,AD5620为125 kSPS,AD5443为2.5 MSPS。根据采样原理,最大输出频率约为最大更新速率的三分之一。

为了使本文所讨论的电路达到理想的性能,必须采用出色的布局、接地和去耦技术(请参考和)。

阅读(3879) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~