一般的服务器都需要线程池,比如Web、FTP等服务器,不过它们一般都自己实现了线程池,
比如以前介绍过的、
Resin和Jetty等,现在有了JDK5,我们就没有必要重复造车轮了,直接使用就可以,何况使用也很方便,性能也非常高。
package
concurrent;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class TestThreadPool {
public
static void main(String args[]) throws InterruptedException
{
// only two
threads
ExecutorService
exec = Executors.newFixedThreadPool(2);
for(int index = 0; index < 100; index++) {
Runnable run = new Runnable() {
public
void run() {
long
time = (long) (Math.random() * 1000);
System.out.println(“Sleeping ” + time + “ms”);
try
{
Thread.sleep(time);
} catch (InterruptedException e) {
}
}
};
exec.execute(run);
}
// must shutdown
exec.shutdown();
}
}
上面是一个简单的例子,使用了2个大小的线程池来处理100个线程。但有一个问题:在for
循环的过程中,会等待线程池有空闲的线程,所以主线程会阻塞的。为了解决这个问题,一般启动一个线程来做for循环,就是为了避免由于线程池满了造成主线
程阻塞。不过在这里我没有这样处理。[重要修正:经过测试,即使线程池大小小于实际线程数大小,线程池也不会阻塞的,这与Tomcat的线程池不同,它将
Runnable实例放到一个“无限”的BlockingQueue中,所以就不用一个线程启动for循环,Doug Lea果然厉害]
另外它使用了Executors的静态函数生成一个固定的线程池,顾名思义,线程池的线程是
不会释放的,即使它是Idle。这就会产生性能问题,比如如果线程池的大小为200,当全部使用完毕后,所有的线程会继续留在池中,相应的内存和线程切换
(while(true)+sleep循环)都会增加。如果要避免这个问题,就必须直接使用ThreadPoolExecutor()来构造。可以像
Tomcat的线程池一样设置“最大线程数”、“最小线程数”和“空闲线程keepAlive的时间”。通过这些可以基本上替换Tomcat的线程池实现
方案。
需要注意的是线程池必须使用shutdown来显式关闭,否则主线程就无法退出。
shutdown也不会阻塞主线程。
许多长时间运行的应用有时候需要定时运行
任务完成一些诸如统计、优化等工作,比如在电信行业中处理用户话单时,需要每隔1分钟处理话单;网站每天凌晨统计用户访问量、用户数;大型超时凌晨3点统
计当天销售额、以及最热卖的商品;每周日进行数据库备份;公司每个月的10号计算工资并进行转帐等,这些都是定时任务。通过 java的并发库
concurrent可
以轻松的完成这些任务,而且非常的简单。
package
concurrent;
import static java.util.concurrent.TimeUnit.SECONDS;
import java.util.Date;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
public class TestScheduledThread {
public
static void main(String[] args) {
final ScheduledExecutorService scheduler = Executors
.newScheduledThreadPool(2);
final Runnable beeper = new
Runnable() {
int count = 0;
public void run() {
System.out.println(new Date() + ” beep ” + (++count));
}
};
//
1秒钟后运行,并每隔2秒运行一次
final ScheduledFuture beeperHandle =
scheduler.scheduleAtFixedRate(
beeper, 1, 2, SECONDS);
//
2秒钟后运行,并每次在上次任务运行完后等待5秒后重新运行
final ScheduledFuture beeperHandle2 = scheduler
.scheduleWithFixedDelay(beeper, 2, 5, SECONDS);
//
30秒后结束关闭任务,并且关闭Scheduler
scheduler.schedule(new Runnable() {
public void run() {
beeperHandle.cancel(true);
beeperHandle2.cancel(true);
scheduler.shutdown();
}
}, 30, SECONDS);
}
}
为了退出进程,上面的代码中加入了关闭Scheduler的操作。而对于24小时运行的应用
而言,是没有必要关闭Scheduler的。
在实际应用中,有时候需要多个
线程同时工作以完成同一件事情,而且在完成过程中,往往会等待其他线程都完成某一阶段后再执行,等所有线程都到达某一个阶段后再统一执行。
比如有几个旅行团需要途经深圳、广州、韶关、长沙最后到达武汉。旅行团中有自驾游的,有徒步
的,有乘坐旅游大巴的;这些旅行团同时出发,并且每到一个目的地,都要等待其他旅行团到达此地后再同时出发,直到都到达终点站武汉。
这时候CyclicBarrier就
可以派上用场。CyclicBarrier最重要的属性就是参与者个数,另外最要方法是await()。当所有线程都调用了await()后,就表示这些
线程都可以继续执行,否则就会等待。
package
concurrent;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class TestCyclicBarrier {
// 徒步需要的时间:
Shenzhen, Guangzhou, Shaoguan, Changsha, Wuhan
private
static int[] timeWalk = { 5, 8, 15, 15, 10 };
// 自驾游
private
static int[] timeSelf = { 1, 3, 4, 4, 5 };
// 旅游大巴
private
static int[] timeBus = { 2, 4, 6, 6, 7 };
static String now() {
SimpleDateFormat
sdf = new SimpleDateFormat(“HH:mm:ss”);
return sdf.format(new Date()) + “: “;
}
static
class Tour implements Runnable
{
private int[] times;
private CyclicBarrier barrier;
private String tourName;
public Tour(CyclicBarrier barrier, String tourName, int[] times) {
this.times = times;
this.tourName = tourName;
this.barrier = barrier;
}
public void run() {
try {
Thread.sleep(times[0] * 1000);
System.out.println(now() + tourName + ” Reached Shenzhen”);
barrier.await();
Thread.sleep(times[1] * 1000);
System.out.println(now() + tourName + ” Reached Guangzhou”);
barrier.await();
Thread.sleep(times[2] * 1000);
System.out.println(now() + tourName + ” Reached Shaoguan”);
barrier.await();
Thread.sleep(times[3] * 1000);
System.out.println(now() + tourName + ” Reached Changsha”);
barrier.await();
Thread.sleep(times[4] * 1000);
System.out.println(now() + tourName + ” Reached Wuhan”);
barrier.await();
} catch (InterruptedException e) {
} catch (BrokenBarrierException e) {
}
}
}
public
static void main(String[] args) {
// 三个旅行团
CyclicBarrier
barrier = new CyclicBarrier(3);
ExecutorService
exec = Executors.newFixedThreadPool(3);
exec.submit(new Tour(barrier, “WalkTour”, timeWalk));
exec.submit(new Tour(barrier, “SelfTour”, timeSelf));
exec.submit(new Tour(barrier, “BusTour”, timeBus));
exec.shutdown();
}
}
运行结果:
00:02:25: SelfTour Reached Shenzhen
00:02:25: BusTour Reached Shenzhen
00:02:27: WalkTour Reached Shenzhen
00:02:30: SelfTour Reached Guangzhou
00:02:31: BusTour Reached Guangzhou
00:02:35: WalkTour Reached Guangzhou
00:02:39: SelfTour Reached Shaoguan
00:02:41: BusTour Reached Shaoguan
并发库中的BlockingQueue是
一个比较好玩的类,顾名思义,就是阻塞队列。该类主要提供了两个方法put()和take(),前者将一个对象放到队列中,如果队列已经满了,就等待直到
有空闲节点;后者从head取一个对象,如果没有对象,就等待直到有可取的对象。
下面的例子比较简单,一个读线程,用于将要处理的文件对象添加到阻塞队列中,另外四个写线程
用于取出文件对象,为了模拟写操作耗时长的特点,特让线程睡眠一段随机长度的时间。另外,该Demo也使用到了线程池和原子整型
(AtomicInteger),AtomicInteger可以在并发情况下达到原子化更新,避免使用了synchronized,而且性能非常高。由
于阻塞队列的put和take操作会阻塞,为了使线程退出,特在队列中添加了一个“标识”,算法中也叫“哨兵”,当发现这个哨兵后,写线程就退出。
当然线程池也要显式退出了。
package concurrent;
import java.io.File;
import java.io.FileFilter;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicInteger;
public class TestBlockingQueue {
static long randomTime() {
return (long) (Math.random() * 1000);
}
public
static void main(String[] args) {
// 能容纳100个文件
final BlockingQueue queue = new
LinkedBlockingQueue(100);
// 线程池
final ExecutorService exec = Executors.newFixedThreadPool(5);
final File root = new File(“F:\\JavaLib”);
// 完成标志
final File exitFile = new
File(“”);
// 读个数
final AtomicInteger rc = new
AtomicInteger();
// 写个数
final AtomicInteger wc = new
AtomicInteger();
// 读线程
Runnable read = new Runnable() {
public void run() {
scanFile(root);
scanFile(exitFile);
}
public
void scanFile(File file) {
if (file.isDirectory()) {
File[] files = file.listFiles(new FileFilter() {
public
boolean accept(File pathname) {
return
pathname.isDirectory()
||
pathname.getPath().endsWith(“.java”);
}
});
for
(File
one : files)
scanFile(one);
} else {
try
{
int
index = rc.incrementAndGet();
System.out.println(“Read0: ” + index + ” “
+
file.getPath());
queue.put(file);
} catch (InterruptedException e) {
}
}
}
};
exec.submit(read);
// 四个写线程
for (int index = 0; index < 4; index++) {
// write thread
final int NO =
index;
Runnable write =
new Runnable() {
String
threadName = “Write” + NO;
public
void run() {
while
(true) {
try
{
Thread.sleep(randomTime());
int
index = wc.incrementAndGet();
File
file = queue.take();
//
队列已经无对象
if
(file
== exitFile) {
//
再次添加”标志”,以让其他线程正常退出
queue.put(exitFile);
break;
}
System.out.println(threadName + “: ” + index + ” “
+
file.getPath());
} catch (InterruptedException e) {
}
}
}
};
exec.submit(write);
}
exec.shutdown();
}
}
从名字可以看出,
CountDownLatch是
一个倒数计数的锁,当倒数到0时触发事件,也就是开锁,其他人就可以进入了。在一些应用场合中,需要等待某个条件达到要求后才能做后面的事情;同时当线程
都完成后也会触发事件,以便进行后面的操作。
CountDownLatch最重要的方法是countDown()和await(),前者
主要是倒数一次,后者是等待倒数到0,如果没有到达0,就只有阻塞等待了。
一个CountDouwnLatch实例是不能重复使用的,也就是说它是一次性的,锁一经被
打开就不能再关闭使用了,如果想重复使用,请考虑使用。
下面的例子简单的说明了CountDownLatch的使用方法,模拟了100米赛跑,10
名选手已经准备就绪,只等裁判一声令下。当所有人都到达终点时,比赛结束。
同样,线程池需要显式shutdown。
package
concurrent;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class TestCountDownLatch {
public
static void main(String[] args) throws InterruptedException
{
// 开始的倒数锁
final CountDownLatch begin = new
CountDownLatch(1);
// 结束的倒数锁
final CountDownLatch end = new
CountDownLatch(10);
// 十名选手
final ExecutorService exec = Executors.newFixedThreadPool(10);
for(int index = 0; index < 10; index++) {
final int NO =
index + 1;
Runnable run = new Runnable(){
public
void run() {
try
{
begin.await();
Thread.sleep((long) (Math.random() * 10000));
System.out.println(“No.” + NO + ” arrived”);
} catch (InterruptedException e) {
} finally {
end.countDown();
}
}
};
exec.submit(run);
}
System.out.println(“Game Start”);
begin.countDown();
end.await();
System.out.println(“Game Over”);
exec.shutdown();
}
}
运行结果:
Game Start
No.4 arrived
No.1 arrived
No.7 arrived
No.9 arrived
No.3 arrived
No.2 arrived
No.8 arrived
No.10 arrived
No.6 arrived
No.5 arrived
Game Over
有时候在实际应用中,某些操作很耗时,但
又不是不可或缺的步骤。比如用网页浏览器浏览新闻时,最重要的是要显示文字内容,至于与新闻相匹配的图片就没有那么重要的,所以此时首先保证文字信息先显
示,而图片信息会后显示,但又不能不显示,由于下载图片是一个耗时的操作,所以必须一开始就得下载。
Java的并
发库的Future类
就可以满足这个要求。Future的重要方法包括get()和cancel(),get()获取数据对象,如果数据没有加载,就会阻塞直到取到数据,而
cancel()是取消数据加载。另外一个get(timeout)操作,表示如果在timeout时间内没有取到就失败返回,而不再阻塞。
下面的Demo简单的说明了Future的使用方法:一个非常耗时的操作必须一开始启动,但
又不能一直等待;其他重要的事情又必须做,等完成后,就可以做不重要的事情。
package
concurrent;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class TestFutureTask {
public
static void main(String[] args)throws InterruptedException,
ExecutionException
{
final ExecutorService exec = Executors.newFixedThreadPool(5);
Callable call = new Callable() {
public String call() throws Exception
{
Thread.sleep(1000 * 5);
return
“Other less important but
longtime things.”;
}
};
Future task =
exec.submit(call);
// 重要的事情
Thread.sleep(1000 * 3);
System.out.println(“Let’s do important
things.”);
// 其他不重要的事情
String obj =
task.get();
System.out.println(obj);
// 关闭线程池
exec.shutdown();
}
}
运行结果:
Let’s do important things.
Other less important but longtime things.
考虑以下场景:浏览网页时,浏览器了5个
线程下载网页中的图片文件,由于图片大小、网站访问速度等诸多因素的影响,完成图片下载的时间就会有很大的不同。如果先下载完成的图片就会被先显示到界面
上,反之,后下载的图片就后显示。
Java的并
发库的CompletionService可
以满足这种场景要求。该接口有两个重要方法:submit()和take()。submit用于提交一个runnable或者callable,一般会提
交给一个线程池处理;而take就是取出已经执行完毕runnable或者callable实例的Future对象,如果没有满足要求的,就等待了。
CompletionService还有一个对应的方法poll,该方法与take类似,只是不会等待,如果没有满足要求,就返回null对象。
package
concurrent;
import java.util.concurrent.Callable;
import java.util.concurrent.CompletionService;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorCompletionService;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class TestCompletionService {
public
static void main(String[] args) throws InterruptedException,
ExecutionException
{
ExecutorService
exec = Executors.newFixedThreadPool(10);
CompletionService
serv =
new ExecutorCompletionService(exec);
for (int index = 0; index < 5; index++) {
final int NO =
index;
Callable
downImg = new Callable() {
public
String call() throws Exception {
Thread.sleep((long) (Math.random() * 10000));
return
“Downloaded Image ” + NO;
}
};
serv.submit(downImg);
}
Thread.sleep(1000 * 2);
System.out.println(“Show web content”);
for (int index = 0; index < 5; index++) {
Future task =
serv.take();
String img =
task.get();
System.out.println(img);
}
System.out.println(“End”);
// 关闭线程池
exec.shutdown();
}
}
运行结果:
Show web content
Downloaded Image 1
Downloaded Image 2
Downloaded Image 4
Downloaded Image 0
Downloaded Image 3
End
操作系统的信号量是个很重要的概念,在进程控制方面都有应用。并
发库的Semaphore可
以很轻松完成信号量控制,Semaphore可以控制某个资源可被同时访问的个数,acquire()获取一个许可,如果没有就等待,而
release()释放一个许可。比如在Windows下可以设置共享文件的最大客户端访问个数。
Semaphore维护了当前访问的个数,提供同步机制,控制同时访问的个数。在数据结构中
链表可以保存“无限”的节点,用Semaphore可以实现有限大小的链表。另外重入锁ReentrantLock也可以实现该功能,但实现上要负责些,
代码也要复杂些。
下面的Demo中申明了一个只有5个许可的Semaphore,而有20个线程要访问这个资
源,通过acquire()和release()获取和释放访问许可。
package
concurrent;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
public class TestSemaphore {
public
static void main(String[] args) {
// 线程池
ExecutorService
exec = Executors.newCachedThreadPool();
// 只能5个线程同时访问
final Semaphore semp = new
Semaphore(5);
// 模拟20个客户端访问
for (int index = 0; index < 20; index++) {
final int NO =
index;
Runnable run = new Runnable() {
public
void run() {
try
{
// 获取许可
semp.acquire();
System.out.println(“Accessing: ” + NO);
Thread.sleep((long) (Math.random() * 10000));
//
访问完后,释放
semp.release();
} catch (InterruptedException e) {
}
}
};
exec.execute(run);
}
// 退出线程池
exec.shutdown();
}
}
运行结果:
Accessing: 0
Accessing: 1
Accessing: 2
Accessing: 3
Accessing: 4
Accessing: 5
Accessing: 6
Accessing: 7
Accessing: 8
Accessing: 9
Accessing: 10
Accessing: 11
Accessing: 12
Accessing: 13
Accessing: 14
Accessing: 15
Accessing: 16
Accessing: 17
Accessing: 18
Accessing: 19