Chinaunix首页 | 论坛 | 博客
  • 博客访问: 967228
  • 博文数量: 403
  • 博客积分: 27
  • 博客等级: 民兵
  • 技术积分: 165
  • 用 户 组: 普通用户
  • 注册时间: 2011-12-25 22:20
文章分类

全部博文(403)

文章存档

2016年(3)

2015年(16)

2014年(163)

2013年(222)

分类: LINUX

2013-05-28 20:25:48

1. 中断流控层简介

早期的内核版本中,几乎所有的中断都是由__do_IRQ函数进行处理,但是,因为各种中断请求的电气特性会有所不同,又或者中断控制器的特性也不同,这会导致以下这些处理也会有所不同:

  • 何时对中断控制器发出ack回应;
  • mask_irq和unmask_irq的处理;
  • 中断控制器是否需要eoi回应?
  • 何时打开cpu的本地irq中断?以便允许irq的嵌套;
  • 中断数据结构的同步和保护;
/*****************************************************************************************************/
声明:本博内容均由http://blog.csdn.net/droidphone原创,转载请注明出处,谢谢!
/*****************************************************************************************************/
为此,通用中断子系统把几种常用的流控类型进行了抽象,并为它们实现了相应的标准函数,我们只要选择相应的函数,赋值给irq所对应的irq_desc结构的handle_irq字段中即可。这些标准的回调函数都是irq_flow_handler_t类型:

  1. typedef void (*irq_flow_handler_t)(unsigned int irq,
  2. struct irq_desc *desc);
typedef void (*irq_flow_handler_t)(unsigned int irq, struct irq_desc *desc);目前的通用中断子系统实现了以下这些标准流控回调函数,这些函数都定义在:kernel/irq/chip.c中,

  • handle_simple_irq 用于简易流控处理;
  • handle_level_irq 用于电平触发中断的流控处理;
  • handle_edge_irq 用于边沿触发中断的流控处理;
  • handle_fasteoi_irq 用于需要响应eoi的中断控制器;
  • handle_percpu_irq 用于只在单一cpu响应的中断;
  • handle_nested_irq 用于处理使用线程的嵌套中断;

驱动程序和板级代码可以通过以下几个API设置irq的流控函数:

  • irq_set_handler();
  • irq_set_chip_and_handler();
  • irq_set_chip_and_handler_name();

以下这个序列图展示了整个通用中断子系统的中断响应过程,flow_handle一栏就是中断流控层的生命周期:


图1.1 通用中断子系统的中断响应过程

2. handle_simple_irq

该函数没有实现任何实质性的流控操作,在把irq_desc结构锁住后,直接调用handle_irq_event处理irq_desc中的action链表,它通常用于多路复用(类似于中断控制器级联)中的子中断,由父中断的流控回调中调用。或者用于无需进行硬件控制的中断中。以下是它的经过简化的代码:

  1. void
  2. handle_simple_irq(unsigned int irq, struct irq_desc *desc)
  3. {
  4. raw_spin_lock(&desc->lock);
  5. ......
  6. handle_irq_event(desc);
  7. out_unlock:
  8. raw_spin_unlock(&desc->lock);
  9. }
void handle_simple_irq(unsigned int irq, struct irq_desc *desc) { raw_spin_lock(&desc->lock); ...... handle_irq_event(desc); out_unlock: raw_spin_unlock(&desc->lock); }

3. handle_level_irq
该函数用于处理电平中断的流控操作。电平中断的特点是,只要设备的中断请求引脚(中断线)保持在预设的触发电平,中断就会一直被请求,所以,为了避免同一中断被重复响应,必须在处理中断前先把mask irq,然后ack irq,以便复位设备的中断请求引脚,响应完成后再unmask irq。实际的情况稍稍复杂一点,在mask和ack之后,还要判断IRQ_INPROGRESS标志位,如果该标志已经置位,则直接退出,不再做实质性的处理,IRQ_INPROGRESS标志在handle_irq_event的开始设置,在handle_irq_event结束时清除,如果监测到IRQ_INPROGRESS被置位,表明该irq正在被另一个CPU处理中,所以直接退出,对电平中断来说是正确的处理方法。但是我觉得在ARM系统中,这种情况根本就不会发生,因为在没有进入handle_level_irq之前,中断控制器没有收到ack通知,它不会向第二个CPU再次发出中断请求,而当程序进入handle_level_irq之后,第一个动作就是mask irq,然后ack irq(通常是联合起来的:mask_ack_irq),这时候就算设备再次发出中断请求,也是在handle_irq_event结束,unmask irq之后,这时IRQ_INPROGRESS标志已经被清除。我不知道其他像X86之类的体系是否有不同的行为,有知道的朋友请告知我一下。以下是handle_level_irq经过简化之后的代码:
  1. void
  2. handle_level_irq(unsigned int irq, struct irq_desc *desc)
  3. {
  4. raw_spin_lock(&desc->lock);
  5. mask_ack_irq(desc);
  6. if (unlikely(irqd_irq_inprogress(&desc->irq_data)))
  7. goto out_unlock;
  8. ......
  9. if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data)))
  10. goto out_unlock;
  11. handle_irq_event(desc);
  12. if (!irqd_irq_disabled(&desc->irq_data) && !(desc->istate & IRQS_ONESHOT))
  13. unmask_irq(desc);
  14. out_unlock:
  15. raw_spin_unlock(&desc->lock);
  16. }
void handle_level_irq(unsigned int irq, struct irq_desc *desc) { raw_spin_lock(&desc->lock); mask_ack_irq(desc); if (unlikely(irqd_irq_inprogress(&desc->irq_data))) goto out_unlock; ...... if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) goto out_unlock; handle_irq_event(desc); if (!irqd_irq_disabled(&desc->irq_data) && !(desc->istate & IRQS_ONESHOT)) unmask_irq(desc); out_unlock: raw_spin_unlock(&desc->lock); } 虽然handle_level_irq对电平中断的流控进行了必要的处理,因为电平中断的特性:只要没有ack irq,中断线会一直有效,所以我们不会错过某次中断请求,但是驱动程序的开发人员如果对该过程理解不透彻,特别容易发生某次中断被多次处理的情况。特别是使用了中断线程(action->thread_fn)来响应中断的时候:通常mask_ack_irq只会清除中断控制器的pending状态,很多慢速设备(例如通过i2c或spi控制的设备)需要在中断线程中清除中断线的pending状态,但是未等到中断线程被调度执行的时候,handle_level_irq早就返回了,这时已经执行过unmask_irq,设备的中断线pending处于有效状态,中断控制器会再次发出中断请求,结果是设备的一次中断请求,产生了两次中断响应。要避免这种情况,最好的办法就是不要单独使用中断线程处理中断,而是要实现request_threaded_irq()的第二个参数irq_handler_t:handler,在handle回调中使用disable_irq()关闭该irq,然后在退出中断线程回调前再enable_irq()。假设action->handler没有屏蔽irq,以下这幅图展示了电平中断期间IRQ_PROGRESS标志、本地中断状态和触发其他CPU的状态:
图3.1 电平触发中断状态

4. handle_edge_irq
该函数用于处理边沿触发中断的流控操作。边沿触发中断的特点是,只有设备的中断请求引脚(中断线)的电平发生跳变时(由高变低或者有低变高),才会发出中断请求,因为跳变是一瞬间,而且不会像电平中断能保持住电平,所以处理不当就特别容易漏掉一次中断请求,为了避免这种情况,屏蔽中断的时间必须越短越好。内核的开发者们显然意识到这一点,在正是处理中断前,判断IRQ_PROGRESS标志没有被设置的情况下,只是ack irq,并没有mask irq,以便复位设备的中断请求引脚,在这之后的中断处理期间,另外的cpu可以再次响应同一个irq请求,如果IRQ_PROGRESS已经置位,表明另一个CPU正在处理该irq的上一次请求,这种情况下,他只是简单地设置IRQS_PENDING标志,然后mask_ack_irq后退出,中断请求交由原来的CPU继续处理。因为是mask_ack_irq,所以系统实际上只允许挂起一次中断。
  1. if (unlikely(irqd_irq_disabled(&desc->irq_data) ||
  2. irqd_irq_inprogress(&desc->irq_data) || !desc->action)) {
  3. if (!irq_check_poll(desc)) {
  4. desc->istate |= IRQS_PENDING;
  5. mask_ack_irq(desc);
  6. goto out_unlock;
  7. }
  8. }
  9. desc->irq_data.chip->irq_ack(&desc->irq_data);
if (unlikely(irqd_irq_disabled(&desc->irq_data) || irqd_irq_inprogress(&desc->irq_data) || !desc->action)) { if (!irq_check_poll(desc)) { desc->istate |= IRQS_PENDING; mask_ack_irq(desc); goto out_unlock; } } desc->irq_data.chip->irq_ack(&desc->irq_data);从上面的分析可以知道,处理中断期间,另一次请求可能由另一个cpu响应后挂起,所以在处理完本次请求后还要判断IRQS_PENDING标志,如果被置位,当前cpu要接着处理被另一个cpu“委托”的请求。内核在这里设置了一个循环来处理这种情况,直到IRQS_PENDING标志无效为止,而且因为另一个cpu在响应并挂起irq时,会mask irq,所以在循环中要再次unmask irq,以便另一个cpu可以再次响应并挂起irq:
  1. do {
  2. ......
  3. if (unlikely(desc->istate & IRQS_PENDING)) {
  4. if (!irqd_irq_disabled(&desc->irq_data) &&
  5. irqd_irq_masked(&desc->irq_data))
  6. unmask_irq(desc);
  7. }
  8. handle_irq_event(desc);
  9. } while ((desc->istate & IRQS_PENDING) &&
  10. !irqd_irq_disabled(&desc->irq_data));
do { ...... if (unlikely(desc->istate & IRQS_PENDING)) { if (!irqd_irq_disabled(&desc->irq_data) && irqd_irq_masked(&desc->irq_data)) unmask_irq(desc); } handle_irq_event(desc); } while ((desc->istate & IRQS_PENDING) && !irqd_irq_disabled(&desc->irq_data)); IRQS_PENDING标志会在handle_irq_event中清除。

图4.1 边沿触发中断状态
由图4.1也可以看出,在处理软件中断(softirq)期间,此时仍然处于中断上下文中,但是cpu的本地中断是处于打开状态的,这表明此时嵌套中断允许发生,不过这不要紧,因为重要的处理已经完成,被嵌套的也只是软件中断部分而已。这个也就是内核区分top和bottom两个部分的初衷吧。
5. handle_fasteoi_irq
现代的中断控制器通常会在硬件上实现了中断流控功能,例如ARM体系中的GIC通用中断控制器。对于这种中断控制器,CPU只需要在每次处理完中断后发出一个end of interrupt(eoi),我们无需关注何时mask,何时unmask。不过虽然想着很完美,事情总有特殊的时候,所以内核还是给了我们插手的机会,它利用irq_desc结构中的preflow_handler字段,在正式处理中断前会通过preflow_handler函数调用该回调。
  1. void
  2. handle_fasteoi_irq(unsigned int irq, struct irq_desc *desc)
  3. {
  4. raw_spin_lock(&desc->lock);
  5. if (unlikely(irqd_irq_inprogress(&desc->irq_data)))
  6. if (!irq_check_poll(desc))
  7. goto out;
  8. ......
  9. if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) {
  10. desc->istate |= IRQS_PENDING;
  11. mask_irq(desc);
  12. goto out;
  13. }
  14. if (desc->istate & IRQS_ONESHOT)
  15. mask_irq(desc);
  16. preflow_handler(desc);
  17. handle_irq_event(desc);
  18. out_eoi:
  19. desc->irq_data.chip->irq_eoi(&desc->irq_data);
  20. out_unlock:
  21. raw_spin_unlock(&desc->lock);
  22. return;
  23. ......
  24. }
void handle_fasteoi_irq(unsigned int irq, struct irq_desc *desc) { raw_spin_lock(&desc->lock); if (unlikely(irqd_irq_inprogress(&desc->irq_data))) if (!irq_check_poll(desc)) goto out; ...... if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; mask_irq(desc); goto out; } if (desc->istate & IRQS_ONESHOT) mask_irq(desc); preflow_handler(desc); handle_irq_event(desc); out_eoi: desc->irq_data.chip->irq_eoi(&desc->irq_data); out_unlock: raw_spin_unlock(&desc->lock); return; ...... }此外,内核还提供了另外一个eoi版的函数:handle_edge_eoi_irq,它的处理类似于handle_edge_irq,只是无需实现mask和unmask的逻辑。
6. handle_percpu_irq
该函数用于smp系统,当某个irq只在一个cpu上处理时,我们可以无需用自旋锁对数据进行保护,也无需处理cpu之间的中断嵌套重入,所以函数很简单:
  1. void
  2. handle_percpu_irq(unsigned int irq, struct irq_desc *desc)
  3. {
  4. struct irq_chip *chip = irq_desc_get_chip(desc);
  5. kstat_incr_irqs_this_cpu(irq, desc);
  6. if (chip->irq_ack)
  7. chip->irq_ack(&desc->irq_data);
  8. handle_irq_event_percpu(desc, desc->action);
  9. if (chip->irq_eoi)
  10. chip->irq_eoi(&desc->irq_data);
  11. }
void handle_percpu_irq(unsigned int irq, struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); kstat_incr_irqs_this_cpu(irq, desc); if (chip->irq_ack) chip->irq_ack(&desc->irq_data); handle_irq_event_percpu(desc, desc->action); if (chip->irq_eoi) chip->irq_eoi(&desc->irq_data); }
7. handle_nested_irq

该函数用于实现其中一种中断共享机制,当多个中断共享某一根中断线时,我们可以把这个中断线作为父中断,共享该中断的各个设备作为子中断,在父中断的中断线程中决定和分发响应哪个设备的请求,在得出真正发出请求的子设备后,调用handle_nested_irq来响应中断。所以,该函数是在进程上下文执行的,我们也无需扫描和执行irq_desc结构中的action链表。父中断在初始化时必须通过irq_set_nested_thread函数明确告知中断子系统:这些子中断属于线程嵌套中断类型,这样驱动程序在申请这些子中断时,内核不会为它们建立自己的中断线程,所有的子中断共享父中断的中断线程。

  1. void handle_nested_irq(unsigned int irq)
  2. {
  3. ......
  4. might_sleep();
  5. raw_spin_lock_irq(&desc->lock);
  6. ......
  7. action = desc->action;
  8. if (unlikely(!action || irqd_irq_disabled(&desc->irq_data)))
  9. goto out_unlock;
  10. irqd_set(&desc->irq_data, IRQD_IRQ_INPROGRESS);
  11. raw_spin_unlock_irq(&desc->lock);
  12. action_ret = action->thread_fn(action->irq, action->dev_id);
  13. raw_spin_lock_irq(&desc->lock);
  14. irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
  15. out_unlock:
  16. raw_spin_unlock_irq(&desc->lock);
  17. }
阅读(386) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~