Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1646998
  • 博文数量: 268
  • 博客积分: 8708
  • 博客等级: 中将
  • 技术积分: 3764
  • 用 户 组: 普通用户
  • 注册时间: 2007-04-06 15:58
文章分类

全部博文(268)

文章存档

2014年(1)

2013年(15)

2012年(23)

2011年(60)

2010年(51)

2009年(12)

2008年(59)

2007年(47)

分类: BSD

2009-05-22 15:48:56

排序(sort)或分类

     所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。其确切定义如下:
  输入:n个记录R1,R2,…,Rn,其相应的关键字分别为K1,K2,…,Kn
  输出:Ril,Ri2,…,Rin,使得Ki1≤Ki2≤…≤Kin。(或Ki1≥Ki2≥…≥Kin)。

1.被排序对象--文件
  被排序的对象--文件由一组记录组成。
  记录则由若干个数据项(或域)组成。其中有一项可用来标识一个记录,称为关键字项。该数据项的值称为关键字(Key)。
  注意:
     在不易产生混淆时,将关键字项简称为关键字。

2.排序运算的依据--关键字
     用来作排序运算依据的关键字,可以是数字类型,也可以是字符类型。
     关键字的选取应根据问题的要求而定。
【例】在高考成绩统计中将每个考生作为一个记录。每条记录包含准考证号、姓名、各科的分数和总分数等项内容。若要惟一地标识一个考生的记录,则必须用"准考证号"作为关键字。若要按照考生的总分数排名次,则需用"总分数"作为关键字。
 
排序的稳定性

     当待排序记录的关键字均不相同时,排序结果是惟一的,否则排序结果不唯一。
     在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生变化,则称这种排序方法是不稳定的
  注意:
     排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。

排序方法的分类

1.按是否涉及数据的内、外存交换分

     在排序过程中,若整个文件都是放在内存中处理,排序时不涉及数据的内、外存交换,则称之为内部排序(简称内排序);反之,若排序过程中要进行数据的内、外存交换,则称之为外部排序
  注意:
     ① 内排序适用于记录个数不很多的小文件
     ② 外排序则适用于记录个数太多,不能一次将其全部记录放人内存的大文件。

2.按策略划分内部排序方法
     可以分为五类:插入排序、选择排序、交换排序、归并排序和分配排序。

排序算法分析

1.排序算法的基本操作

     大多数排序算法都有两个基本的操作:
  (1) 比较两个关键字的大小;
  (2) 改变指向记录的指针或移动记录本身。
  注意:
     第(2)种基本操作的实现依赖于待排序记录的存储方式。

2.待排文件的常用存储方式
(1) 以顺序表(或直接用向量)作为存储结构
    排序过程:对记录本身进行物理重排(即通过关键字之间的比较判定,将记录移到合适的位置)

(2) 以链表作为存储结构
  排序过程:无须移动记录,仅需修改指针。通常将这类排序称为链表(或链式)排序;

(3) 用顺序的方式存储待排序的记录,但同时建立一个辅助表(如包括关键字和指向记录位置的指针组成的索引表)
  排序过程:只需对辅助表的表目进行物理重排(即只移动辅助表的表目,而不移动记录本身)。适用于难于在链表上实现,仍需避免排序过程中移动记录的排序方法。

3.排序算法性能评价
(1) 评价排序算法好坏的标准
  评价排序算法好坏的标准主要有两条:
     ① 执行时间和所需的辅助空间
     ② 算法本身的复杂程度

(2) 排序算法的空间复杂度
  若排序算法所需的辅助空间并不依赖于问题的规模n,即辅助空间是O(1),则称之为就地排序(In-PlaceSou)。
  非就地排序一般要求的辅助空间为O(n)。

(3) 排序算法的时间开销
  大多数排序算法的时间开销主要是关键字之间的比较和记录的移动。有的排序算法其执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。

文件的顺序存储结构表示

  #define n l00 //假设的文件长度,即待排序的记录数目
  typedef int KeyType; //假设的关键字类型
  typedef struct{ //记录类型
    KeyType key; //关键字项
    InfoType otherinfo;//其它数据项,类型InfoType依赖于具体应用而定义
   }RecType;
  typedef RecType SeqList[n+1];//SeqList为顺序表类型,表中第0个单元一般用作哨兵
  注意:
     若关键字类型没有比较算符,则可事先定义宏或函数来表示比较运算。
【例】关键字为字符串时,可定义宏"#define LT(a,b)(Stromp((a),(b))<0)"。那么算法中"a

 

交换排序的基本思想是:两两比较待排序记录的关键字,发现两个记录的次序相反时即进行交换,直到没有反序的记录为止。
     应用交换排序基本思想的主要排序方法有:冒泡排序和快速排序。

冒泡排序

1、排序方法

     将被排序的记录数组R[1..n]垂直排列,每个记录R[i]看作是重量为R[i].key的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R:凡扫描到违反本原则的轻气泡,就使其向上"飘浮"。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止

具体算法
  void BubbleSort(SeqList R)
   { //R(l..n)是待排序的文件,采用自下向上扫描,对R做冒泡排序
     int i,j;
     Boolean exchange; //交换标志
     for(i=1;i       exchange=FALSE; //本趟排序开始前,交换标志应为假
       for(j=n-1;j>=i;j--) //对当前无序区R[i..n]自下向上扫描
        if(R[j+1].key          R[0]=R[j+1]; //R[0]不是哨兵,仅做暂存单元
          R[j+1]=R[j];
          R[j]=R[0];
          exchange=TRUE; //发生了交换,故将交换标志置为真
         }
       if(!exchange) //本趟排序未发生交换,提前终止算法
             return;
     } //endfor(外循环)
    } //BubbleSort

算法分析
(1)算法的最好时间复杂度
     若文件的初始状态是正序的,一趟扫描即可完成排序。所需的关键字比较次数C和记录移动次数M均达到最小值:
        Cmin=n-1
        Mmin=0。
     冒泡排序最好的时间复杂度为O(n)。

(2)算法的最坏时间复杂度

     若初始文件是反序的,需要进行n-1趟排序。每趟排序要进行n-i次关键字的比较(1≤i≤n-1),且每次比较都必须移动记录三次来达到交换记录位置。在这种情况下,比较和移动次数均达到最大值:
        Cmax=n(n-1)/2=O(n2)
        Mmax=3n(n-1)/2=O(n2)
     冒泡排序的最坏时间复杂度为O(n2)。

(3)算法的平均时间复杂度为O(n2)

     虽然冒泡排序不一定要进行n-1趟,但由于它的记录移动次数较多,故平均时间性能比直接插入排序要差得多。

(4)算法稳定性

     冒泡排序是就地排序,且它是稳定的。

算法改进
     上述的冒泡排序还可做如下的改进:
(1)记住最后一次交换发生位置lastExchange的冒泡排序
  在每趟扫描中,记住最后一次交换发生的位置lastExchange,(该位置之前的相邻记录均已有序)。下一趟排序开始时,R[1..lastExchange-1]是有序区,R[lastExchange..n]是无序区。这样,一趟排序可能使当前有序区扩充多个记录,从而减少排序的趟数。具体算法【参见习题】。

(2) 改变扫描方向的冒泡排序
 ①冒泡排序的不对称性
  能一趟扫描完成排序的情况:
     只有最轻的气泡位于R[n]的位置,其余的气泡均已排好序,那么也只需一趟扫描就可以完成排序。

快速排序(QuickSort)

1、算法思想
     快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。

(1) 分治法的基本思想
     分治法的基本思想是:将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。

(2)快速排序的基本思想
     设当前待排序的无序区为R[low..high],利用分治法可将快速排序的基本思想描述为:
①分解:
   
 在R[low..high]中任选一个记录作为基准(Pivot),以此基准将当前无序区划分为左、右两个较小的子区间R[low..pivotpos-1)和R[pivotpos+1..high],并使左边子区间中所有记录的关键字均小于等于基准记录(不妨记为pivot)的关键字pivot.key,右边的子区间中所有记录的关键字均大于等于pivot.key,而基准记录pivot则位于正确的位置(pivotpos)上,它无须参加后续的排序。
  注意:
     划分的关键是要求出基准记录所在的位置pivotpos。划分的结果可以简单地表示为(注意pivot=R[pivotpos]):
     R[low..pivotpos-1].keys≤R[pivotpos].key≤R[pivotpos+1..high].keys
                  其中low≤pivotpos≤high。
②求解:
    
通过递归调用快速排序对左、右子区间R[low..pivotpos-1]和R[pivotpos+1..high]快速排序。
③组合:
   
 因为当"求解"步骤中的两个递归调用结束时,其左、右两个子区间已有序。对快速排序而言,"组合"步骤无须做什么,可看作是空操作。

2、快速排序算法QuickSort
  void QuickSort(SeqList R,int low,int high)
   { //对R[low..high]快速排序
     int pivotpos; //划分后的基准记录的位置
     if(low        pivotpos=Partition(R,low,high); //对R[low..high]做划分
        QuickSort(R,low,pivotpos-1); //对左区间递归排序
        QuickSort(R,pivotpos+1,high); //对右区间递归排序
      }
    } //QuickSort

  注意:
     为排序整个文件,只须调用QuickSort(R,1,n)即可完成对R[l..n]的排序。

3、划分算法Partition
(1) 简单的划分方法
① 具体做法
  第一步:(初始化)设置两个指针i和j,它们的初值分别为区间的下界和上界,即i=low,i=high;选取无序区的第一个记录R[i](即R[low])作为基准记录,并将它保存在变量pivot中;
  第二步:令j自high起向左扫描,直到找到第1个关键字小于pivot.key的记录R[j],将R[j])移至i所指的位置上,这相当于R[j]和基准R[i](即pivot)进行了交换,使关键字小于基准关键字pivot.key的记录移到了基准的左边,交换后R[j]中相当于是pivot;然后,令i指针自i+1位置开始向右扫描,直至找到第1个关键字大于pivot.key的记录R[i],将R[i]移到i所指的位置上,这相当于交换了R[i]和基准R[j],使关键字大于基准关键字的记录移到了基准的右边,交换后R[i]中又相当于存放了pivot;接着令指针j自位置j-1开始向左扫描,如此交替改变扫描方向,从两端各自往中间靠拢,直至i=j时,i便是基准pivot最终的位置,将pivot放在此位置上就完成了一次划分。

②一次划分过程
     一次划分过程中,具体变化情况【】 

③划分算法:
  int Partition(SeqList R,int i,int j)
    {//调用Partition(R,low,high)时,对R[low..high]做划分,
     //并返回基准记录的位置
      ReceType pivot=R[i]; //用区间的第1个记录作为基准 '
      while(i        while(i=pivot.key) //pivot相当于在位置i上
          j--; //从右向左扫描,查找第1个关键字小于pivot.key的记录R[j]
        if(i            R[i++]=R[j]; //相当于交换R[i]和R[j],交换后i指针加1
        while(i            i++; //从左向右扫描,查找第1个关键字大于pivot.key的记录R[i]
        if(ipivot.key
            R[j--]=R[i]; //相当于交换R[i]和R[j],交换后j指针减1
       } //endwhile
      R[i]=pivot; //基准记录已被最后定位
      return i;
    } //partition

阅读(1762) | 评论(0) | 转发(0) |
0

上一篇:Quartz

下一篇:寄存器

给主人留下些什么吧!~~