Chinaunix首页 | 论坛 | 博客
  • 博客访问: 348877
  • 博文数量: 105
  • 博客积分: 2730
  • 博客等级: 少校
  • 技术积分: 1110
  • 用 户 组: 普通用户
  • 注册时间: 2007-04-20 12:09
文章分类

全部博文(105)

文章存档

2013年(3)

2012年(2)

2011年(36)

2010年(34)

2009年(6)

2008年(20)

2007年(4)

分类:

2011-10-30 15:49:12

参考:

****Category
A category is, in essence, a simple collection. It has three components:
一个范畴,有3个成分:

  * A collection of objects.
    一些对象,一些一般的东西(meta?). 
  * A collection of morphisms, each of which ties two objects (a source object and a target object) together.
    (These are sometimes called arrows, but we avoid that term here as it has other connotations in Haskell.)
    If f is a morphism with source object A and target object B, we write "f: A -> B".
    一些"射",每个射都绑定了两个东西 A -> B.
  * A notion of composition of these morphisms. If h is the composition of morphisms f and g, we write "h = f . g"
    射的组合, h = f.g

****Functor
The next Big Topic in category theory is the functor, which relates categories together. 
A functor is essentially a transformation between categories, so given categories C and D, a functor F : C -> D
Functor表示了两个"范畴"之间的转化.
  * Maps any object A in C to F(A), in D.
    映射C中的"东西"到D中, A表示C中的东西,则F(A)表示D中的东西.
  * Maps morphisms "f: A -> B" in C to F(f) : F(A) -> F(B) in D.
    映射C中的"射"到D中, 对于C中的"f : A -> B",到D中的"F(f) : F(A) -> F(B)", 也就是f映射为F(f).

id是"自射", 映射到相同的范畴.
一些axiom(公理):
  * F(id (A)) 等价于  id (F (A))
  * F(f.g)    等价于  F(f).F(g)   -- Functor可以游走于(.)内外.

Haskell中的Functor:
  fmap :: (a -> b) -> (f a -> f b)

范畴学中概念与Haskell的对应:
  * Objects   对应  types       "东西"就是数据
  * Morphisms 对应  functions   "射"就是函数
  * Things that take a type and return another type are type constructors.
    拿走一种类型而返回另一种类型的玩意是类型构造器.
  * Things that take a function and return another function are higher-order functions.
    拿走一种函数而返回另一种函数的玩意是高阶函数.
  * Typeclasses, along with the polymorphism they provide, make a nice way of capturing
    the fact that in category theory things are often defined over a number of objects at once.
    "类",与其提供的"多态",构成了"一次定义,多处可用"的好形式.

****Monads
Monads are obviously an extremely important concept in Haskell,
and in fact they originally came from category theory.
A monad is a special type of functor, from a category to that same category, 
that supports some additional structure. So, down to definitions. 
A monad is a functor "M : C -> C", along with two morphisms[2] for every object X in C:
  * unit : X -> M(X)
  * join : M(M(X)) -> M(X)

{return, fmap, join} 和 {return, >>=} 是等价的

几个有意思的等价性:
  * join . fmap join = join . join
    对于两级"联合",首先进行哪级都是不影响最终结果的.左边的两个join相当于右边的顺序逆反过来.
  * join . fmap return = join . return = id
    先降级再升级 == 先提升再降级 == 什么都没做.
  * return . f = fmap f . return
    操作后提升 == 提升后解剖操作再缝合.
  * join . fmap (fmap f) = fmap f . join
    剖开2层操作在提升 == 提升后剖开一层操作.
这些都是有趣的"我又进来了,我又出去了,打我啊打我啊!"这句台词的翻版,在哪打都一样!

后面是do和monad的分析,就用到了这上面的一些原理.
进行了各种啰嗦的等价性证明,大致就是提来降去的...


阅读(1126) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~