1:概述
平衡二叉树:对有序序列的一种优化,可以用来高效的查找和遍历等的一种树形结构。
2:原型
- GTree* g_tree_new (GCompareFunc key_compare_func);
-
GTree* g_tree_new_with_data (GCompareDataFunc key_compare_func,
-
gpointer key_compare_data);
-
GTree* g_tree_new_full (GCompareDataFunc key_compare_func,
-
gpointer key_compare_data,
-
GDestroyNotify key_destroy_func,
-
GDestroyNotify value_destroy_func);
-
void g_tree_insert (GTree *tree,
-
gpointer key,
-
gpointer value);
-
void g_tree_replace (GTree *tree,
-
gpointer key,
-
gpointer value);
-
gint g_tree_nnodes (GTree *tree);
-
gint g_tree_height (GTree *tree);
-
gpointer g_tree_lookup (GTree *tree,
-
gconstpointer key);
-
gboolean g_tree_lookup_extended (GTree *tree,
-
gconstpointer lookup_key,
-
gpointer *orig_key,
-
gpointer *value);
-
void g_tree_foreach (GTree *tree,
-
GTraverseFunc func,
-
gpointer user_data);
-
gpointer g_tree_search (GTree *tree,
-
GCompareFunc search_func,
-
gconstpointer user_data);
-
gboolean g_tree_remove (GTree *tree,
-
gconstpointer key);
-
gboolean g_tree_steal (GTree *tree,
-
gconstpointer key);
-
void g_tree_destroy (GTree *tree);
3:实例
- #include <stdio.h>
-
#include <glib.h>
-
#include <glib/gprintf.h>
-
-
struct map {
-
int key;
-
char *value;
-
} m[10] = {
-
{0,"zero"},
-
{1,"one"},
-
{2,"two"},
-
{3,"three"},
-
{4,"four"},
-
{5,"five"},
-
{6,"six"},
-
{7,"seven"},
-
{8,"eight"},
-
{9,"nine"},
-
};
-
typedef struct map map;
-
-
static gint
-
myCompare(gconstpointer p1, gconstpointer p2)
-
{
-
const char *a = p1;
-
const char *b = p2;
-
-
return *a - *b;
-
}
-
-
static gint
-
mySearch(gconstpointer p1, gconstpointer p2)
-
{
-
return myCompare(p1, p2);
-
}
-
-
static gint
-
myTraverse(gpointer key, gpointer value, gpointer fmt)
-
{
-
g_printf(fmt, *(gint*)key, (gchar*)value);
-
-
return FALSE;
-
}
-
-
static void
-
test_avl_tree(void)
-
{
-
GTree *tree;
-
gint i;
-
-
// GTree* g_tree_new(GCompareFunc key_compare_func);
-
tree = g_tree_new(myCompare);
-
-
// void g_tree_insert(GTree *tree, gpointer key, gpointer value);
-
for (i = 0; i < sizeof(m)/sizeof(m[0]); i++)
-
g_tree_insert(tree, &m[i].key, m[i].value);
-
-
// void g_tree_foreach(GTree *tree, GTraverseFunc func, gpointer user_data);
-
g_printf("Now the tree:\n");
-
g_tree_foreach(tree, myTraverse, "Key:\t%d\t\tVaule:\t%s\n");
-
// gint g_tree_nnodes(GTree *tree);
-
g_printf("The tree should have '%d' items now.\t\tResult: %d.\n", 10, g_tree_nnodes(tree));
-
// gint g_tree_height(GTree *tree);
-
g_printf("The height of tree is '%d' now.\n", g_tree_height(tree));
-
-
// void g_tree_replace(GTree *tree, gpointer key, gpointer value);
-
g_tree_replace(tree, &m[3].key, "3333");
-
g_printf("Now the vaule of '%d' should be '3333' now.\n", m[3].key);
-
g_tree_foreach(tree, myTraverse, "Key:\t%d\t\tVaule:\t%s\n");
-
-
gchar *tmp = NULL;
-
// gpointer g_tree_lookup(GTree *tree, gconstpointer key);
-
g_printf("Now the vaule of '%d' should be '%s' now[lookup].\n",
-
m[3].key,
-
(tmp = (gchar *)g_tree_lookup(tree, &m[3].key)) != NULL ? tmp : NULL);
-
-
// gboolean g_tree_remove(GTree *tree, gconstpointer key);
-
gboolean b = g_tree_remove(tree, &m[3].key);
-
g_printf("The key '%d' has %sbeen found and removed now.\n", m[3].key, b ? "" : "NOT");
-
-
// gpointer g_tree_search(GTree *tree, GCompareFunc search_func, gconstpointer user_data);
-
g_printf("Now the vaule which should be removed of '%d' should be '%s' now[search].\n",
-
m[3].key,
-
(tmp = (gchar *)g_tree_search(tree, mySearch, &m[3].key)) != NULL ? tmp : NULL);
-
-
g_printf("Now the tree look like:\n");
-
g_tree_foreach(tree, myTraverse, "Key:\t%d\t\tVaule:\t%s\n");
-
-
// void g_tree_destroy(GTree *tree);
-
g_tree_destroy(tree);
-
}
-
-
int
-
main(void)
-
{
-
printf("BEGIN:\n************************************************************\n");
-
-
test_avl_tree();
-
-
printf("\n************************************************************\nDONE\n");
-
-
return 0;
-
}
4:结果
- BEGIN:
-
************************************************************
-
Now the tree:
-
Key: 0 Vaule: zero
-
Key: 1 Vaule: one
-
Key: 2 Vaule: two
-
Key: 3 Vaule: three
-
Key: 4 Vaule: four
-
Key: 5 Vaule: five
-
Key: 6 Vaule: six
-
Key: 7 Vaule: seven
-
Key: 8 Vaule: eight
-
Key: 9 Vaule: nine
-
The tree should have '10' items now. Result: 10.
-
The height of tree is '4' now.
-
Now the vaule of '3' should be '3333' now.
-
Key: 0 Vaule: zero
-
Key: 1 Vaule: one
-
Key: 2 Vaule: two
-
Key: 3 Vaule: 3333
-
Key: 4 Vaule: four
-
Key: 5 Vaule: five
-
Key: 6 Vaule: six
-
Key: 7 Vaule: seven
-
Key: 8 Vaule: eight
-
Key: 9 Vaule: nine
-
Now the vaule of '3' should be '3333' now[lookup].
-
The key '3' has been found and removed now.
-
Now the vaule which should be removed of '3' should be '(null)' now[search].
-
Now the tree look like:
-
Key: 0 Vaule: zero
-
Key: 1 Vaule: one
-
Key: 2 Vaule: two
-
Key: 4 Vaule: four
-
Key: 5 Vaule: five
-
Key: 6 Vaule: six
-
Key: 7 Vaule: seven
-
Key: 8 Vaule: eight
-
Key: 9 Vaule: nine
-
-
************************************************************
-
DONE
5:小结
- 创建: g_tree_new()
- 插入: g_tree_insert()
- 查找: g_tree_lookup() g_tree_search()
- 删除: g_tree_remove()
- 属性: g_tree_nnodes() g_tree_height()
- 遍历: g_tree_foreach()
- 销毁: g_tree_destroy()
阅读(2681) | 评论(0) | 转发(0) |