【问题描述】
歌德巴赫猜想说任何一个不小于6的偶数都可以分解为两个奇素数之和。对此问题扩展,如果一个整数能够表示成两个或多个素数之和,则得到一个素数和分解式。对于一个给定的整数,输出所有这种素数和分解式。注意,对于同构的分解只输出一次(比如5只有一个分解2 + 3,而3 + 2是2 + 3的同构分解式)。
例如,对于整数8,可以作为如下三种分解:
(1) 8 = 2 + 2 + 2 + 2
(2) 8 = 2 + 3 + 3
(3) 8 = 3 + 5
【算法分析】
由于要将指定整数N分解为素数之和,则首先需要计算出该整数N内的所有素数,然后递归求解所有素数和分解即可。
先是要求出N内的所有素数...再递归
void decompose(int num, int Primes[], int from, int Prime_counts)
{
int i;
if(num == 0)
{
print;
}
for(i=from; i<Prime_counts; ++i)
{
if(num < Primes[i])
break;
push_stack(S, Primes[i]);
decompose( num-Primes[i] , Primes, i, Prime_counts);
pop_stack(S);
}
}
#include <stdio.h> #include <stdlib.h> #include <math.h>
#define PRIMES_NUMS 8 #define QUIT 999
typedef struct stack { int top; int* num; }STACK;
STACK* S = NULL;
int is_prime(int num) { int i; if(num%2==0) return 0; for(i=3; i<sqrt(num)+1; i+=2) { if(num%i == 0) return 0; } return 1; }
int count_primes(int num, int Primes[]) { int i = 0; int count = 0; Primes[count++] = 2; for(i=3;i<num;i+=2) { if(is_prime(i)) Primes[count++] = i; } return count; }
void init_stack(STACK** S) { *S = (STACK*)malloc(sizeof(STACK)); (*S)->top = 0; (*S)->num = (int*)malloc(PRIMES_NUMS*sizeof(int)); }
void push_stack(STACK* S, int elements) { S->num[S->top] = elements; S->top++; }
int pop_stack(STACK* S) { int element = S->num[S->top]; S->top--; return element; }
void decompose(int num, int Primes[], int from, int Prime_counts) { int i; if(num == 0) { int j = 0; for(;j<S->top;j++) printf("%d\t",S->num[j]); printf("\n"); } for(i=from; i<Prime_counts; ++i) { if(num < Primes[i]) break; push_stack(S, Primes[i]); decompose( num-Primes[i] , Primes, i, Prime_counts); pop_stack(S); } }
void print_primes(int Primes[], int Counts) { int i; for(i=0;i<Counts;i++) printf("%d\t", Primes[i]); printf("\n"); } int main(int argc, char *argv[]) { int number; int Primes[PRIMES_NUMS]; int prime_count; init_stack(&S); printf("Please input the number you want to count:\n"); scanf("%d",&number); while(number!=QUIT) { prime_count = count_primes(number, Primes); //print_primes(Primes, prime_count);
decompose(number, Primes, 0, prime_count); printf("Please input the number you want to count:\n"); scanf("%d",&number); } system("PAUSE"); return 0; }
|
阅读(635) | 评论(0) | 转发(0) |