Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1351549
  • 博文数量: 206
  • 博客积分: 10571
  • 博客等级: 上将
  • 技术积分: 2610
  • 用 户 组: 普通用户
  • 注册时间: 2007-04-30 11:50
文章分类
文章存档

2014年(1)

2013年(4)

2012年(18)

2010年(14)

2009年(31)

2008年(3)

2007年(135)

分类: LINUX

2009-06-15 15:56:12

 
看了<>后对以MTD的分层结构以及各层的分工情况有了大致的了解,然而各层之间是如何进行对话的呢,对于这个问题,<>上没有详细的去说明。

小弟抽空研究了一下,打算从下到上,在从上到下,分两条主线来研究一下MTD原始设备与FLASH硬件驱动的对话(MTD原始设备与更上层的对话留待以后再研究)。

以下是第一部分,从下到上的介绍FLASH硬件驱动与MTD原始设备是如何建立联系的。

1、首先从入口函数开始:
static int s3c24xx_nand_probe(struct device *dev, int is_s3c2440)
{
    struct platform_device *pdev = to_platform_device(dev);
    struct s3c2410_platform_nand *plat = to_nand_plat(dev);
    //获取nand flash配置用结构体数据(dev.c中定义,详细见附录部分)
    struct s3c2410_nand_info *info;
    struct s3c2410_nand_mtd *nmtd;
    struct s3c2410_nand_set *sets;
    struct resource *res;
    int err = 0;
    int size;
    int nr_sets;
    int setno;

    pr_debug("s3c2410_nand_probe(%p)\n", dev);

    info = kmalloc(sizeof(*info), GFP_KERNEL);
    if (info == NULL) {
        printk(KERN_ERR PFX "no memory for flash info\n");
        err = -ENOMEM;
        goto exit_error;
    }

    memzero(info, sizeof(*info));
    dev_set_drvdata(dev, info);                  //以后有用

    spin_lock_init(&info->controller.lock);      //初始化自旋锁
    init_waitqueue_head(&info->controller.wq);   //初始化等待队列

    /* get the clock source and enable it */

    info->clk = clk_get(dev, "nand");
    if (IS_ERR(info->clk)) {
        printk(KERN_ERR PFX "failed to get clock");
        err = -ENOENT;
        goto exit_error;
    }

    clk_use(info->clk);
    clk_enable(info->clk);

    /* allocate and map the resource */

    /* currently we assume we have the one resource */
    res  = pdev->resource;                        //提取dev.c中定义的与设备相关的资源
    size = res->end - res->start + 1;

    info->area = request_mem_region(res->start, size, pdev->name);

    if (info->area == NULL) {
        printk(KERN_ERR PFX "cannot reserve register region\n");
        err = -ENOENT;
        goto exit_error;
    }

    info->device     = dev;
    info->platform   = plat;                     //保存好struct s3c2410_platform_nand结构数据
    info->regs       = ioremap(res->start, size);//映射nand flash用到的寄存器
    info->is_s3c2440 = is_s3c2440;              

    if (info->regs == NULL) {
        printk(KERN_ERR PFX "cannot reserve register region\n");
        err = -EIO;
        goto exit_error;
    }       

    printk(KERN_INFO PFX "mapped registers at %p\n", info->regs);

    /* initialise the hardware */

    err = s3c2410_nand_inithw(info, dev);
    //初始化s3c2410 nand flash控制,主要是配置S3C2410_NFCONF寄存器
    if (err != 0)
        goto exit_error;

    sets = (plat != NULL) ? plat->sets : NULL;  
    nr_sets = (plat != NULL) ? plat->nr_sets : 1;
  
    info->mtd_count = nr_sets;
    //我的板上只有一块nand flash,配置信息见plat-sets,数目为1。

    /* allocate our information */

    size = nr_sets * sizeof(*info->mtds);
    info->mtds = kmalloc(size, GFP_KERNEL);
    if (info->mtds == NULL) {
        printk(KERN_ERR PFX "failed to allocate mtd storage\n");
        err = -ENOMEM;
        goto exit_error;
    }

    memzero(info->mtds, size);

    /* initialise all possible chips */

    nmtd = info->mtds;

    for (setno = 0; setno < nr_sets; setno++, nmtd++) {
        pr_debug("initialising set %d (%p, info %p)\n",
             setno, nmtd, info);
       
        s3c2410_nand_init_chip(info, nmtd, sets);

        nmtd->scan_res = nand_scan(&nmtd->mtd,
                       (sets) ? sets->nr_chips : 1);//为什么使用set->nr_chips(还没配置的东西)?

        if (nmtd->scan_res == 0) {
            s3c2410_nand_add_partition(info, nmtd, sets);
        }

        if (sets != NULL)
            sets++;
    }
   
    pr_debug("initialised ok\n");
    return 0;

 exit_error:
    s3c2410_nand_remove(dev);

    if (err == 0)
        err = -EINVAL;
    return err;
}

//初始化代表一片flash的struct nand_chip结构

static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
                   struct s3c2410_nand_mtd *nmtd,
                   struct s3c2410_nand_set *set)
{
    struct nand_chip *chip = &nmtd->chip;

    chip->IO_ADDR_R       = info->regs + S3C2410_NFDATA;   //读地址
    chip->IO_ADDR_W    = info->regs + S3C2410_NFDATA;      //写地址
    chip->hwcontrol    = s3c2410_nand_hwcontrol;  
    chip->dev_ready    = s3c2410_nand_devready;            //ready状态查询
    chip->write_buf    = s3c2410_nand_write_buf;           //写函数
    chip->read_buf     = s3c2410_nand_read_buf;            //读函数
    chip->select_chip  = s3c2410_nand_select_chip;         //片选函数
    chip->chip_delay   = 50;
    chip->priv       = nmtd;
    chip->options       = 0;
    chip->controller   = &info->controller;

    if (info->is_s3c2440) {
        chip->IO_ADDR_R     = info->regs + S3C2440_NFDATA;
        chip->IO_ADDR_W  = info->regs + S3C2440_NFDATA;
        chip->hwcontrol  = s3c2440_nand_hwcontrol;
    }

    nmtd->info       = info;
    nmtd->mtd.priv       = chip;           
    //nand_scan函数中会调用struct nand_chip *this = mtd->priv取出该struct nand_chip结构
    nmtd->set       = set;

    if (hardware_ecc) {
        chip->correct_data  = s3c2410_nand_correct_data;
        chip->enable_hwecc  = s3c2410_nand_enable_hwecc;
        chip->calculate_ecc = s3c2410_nand_calculate_ecc;
        chip->eccmode        = NAND_ECC_HW3_512;
        chip->autooob       = &nand_hw_eccoob;

        if (info->is_s3c2440) {
            chip->enable_hwecc  = s3c2440_nand_enable_hwecc;
            chip->calculate_ecc = s3c2440_nand_calculate_ecc;
        }
    } else {                                
        chip->eccmode        = NAND_ECC_SOFT;         //ECC的类型
        }
}

/* command and control functions
 *
 * Note, these all use tglx's method of changing the IO_ADDR_W field
 * to make the code simpler, and use the nand layer's code to issue the
 * command and address sequences via the proper IO ports.
 *
*/

static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd)
{
    struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
    struct nand_chip *chip = mtd->priv;

    switch (cmd) {
    case NAND_CTL_SETNCE:
    case NAND_CTL_CLRNCE:
        printk(KERN_ERR "%s: called for NCE\n", __FUNCTION__);
        break;

    case NAND_CTL_SETCLE:
        chip->IO_ADDR_W = info->regs + S3C2410_NFCMD;//写命令
        break;

    case NAND_CTL_SETALE:
        chip->IO_ADDR_W = info->regs + S3C2410_NFADDR;//写地址
        break;

        /* NAND_CTL_CLRCLE: */
        /* NAND_CTL_CLRALE: */
    default:
        chip->IO_ADDR_W = info->regs + S3C2410_NFDATA;//写数据
        break;
    }
}

/* s3c2410_nand_devready()
 *
 * returns 0 if the nand is busy, 1 if it is ready
*/

static int s3c2410_nand_devready(struct mtd_info *mtd)
{
    struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
   
    if (info->is_s3c2440)
        return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
    return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;//返回nand flash都忙标志
}

static void s3c2410_nand_write_buf(struct mtd_info *mtd,
                   const u_char *buf, int len)
{
    struct nand_chip *this = mtd->priv;
    writesb(this->IO_ADDR_W, buf, len);//写操作
}

static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
    struct nand_chip *this = mtd->priv;
    readsb(this->IO_ADDR_R, buf, len);//读操作
}

/* select chip */
/*
 * 根据chip都值设置nand flash都片选信号:
 * chip = -1 -- 禁用nand flash
 * chip !=-1 -- 选择对应的nand flash
 */
static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
{
    struct s3c2410_nand_info *info;
    struct s3c2410_nand_mtd *nmtd;
    struct nand_chip *this = mtd->priv;
    void __iomem *reg;
    unsigned long cur;
    unsigned long bit;

    nmtd = this->priv;
    info = nmtd->info;

    bit = (info->is_s3c2440) ? S3C2440_NFCONT_nFCE : S3C2410_NFCONF_nFCE;
    reg = info->regs+((info->is_s3c2440) ? S3C2440_NFCONT:S3C2410_NFCONF);

    cur = readl(reg);

    if (chip == -1) {
        cur |= bit;
    } else {
        if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
            printk(KERN_ERR PFX "chip %d out of range\n", chip);
            return;
        }

        if (info->platform != NULL) {
            if (info->platform->select_chip != NULL)
                (info->platform->select_chip)(nmtd->set, chip);
        }

        cur &= ~bit;
    }

    writel(cur, reg);
}


注:
    s3c2410_nand_init_chip填充struct nand_chip的一部分成员,nand_scan以通用nand flash的标准进行检测,并填充struct nand_chip的其它成员,必要时根据检测结果进行取舍。

int nand_scan (struct mtd_info *mtd, int maxchips)
{
    int i, nand_maf_id, nand_dev_id, busw, maf_id;
    struct nand_chip *this = mtd->priv;          //取出struct nand_chip结构

    /* Get buswidth to select the correct functions*/
    busw = this->options & NAND_BUSWIDTH_16;     //nand flash的位宽

    /* check for proper chip_delay setup, set 20us if not */
    if (!this->chip_delay)                    
        this->chip_delay = 20;

    /* check, if a user supplied command function given */
    if (this->cmdfunc == NULL)                  //填充命令函数
        this->cmdfunc = nand_command;

    /* check, if a user supplied wait function given */
    if (this->waitfunc == NULL)                  //填充等待函数
        this->waitfunc = nand_wait;

    if (!this->select_chip)                      //s3c2410_nand_init_chip中已定义
        this->select_chip = nand_select_chip;
    if (!this->write_byte)                       //使用默认的
        this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
    if (!this->read_byte)                        //使用默认的
        this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
    if (!this->write_word)                       //使用默认的
        this->write_word = nand_write_word;
    if (!this->read_word)                        //使用默认的
        this->read_word = nand_read_word;
    if (!this->block_bad)                        //使用默认的
        this->block_bad = nand_block_bad;
    if (!this->block_markbad)                    //使用默认的
        this->block_markbad = nand_default_block_markbad;
    if (!this->write_buf)                        //s3c2410_nand_init_chip中已定义
        this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
    if (!this->read_buf)                         //s3c2410_nand_init_chip中已定义
        this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
    if (!this->verify_buf)                       //使用默认的
        this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
    if (!this->scan_bbt)                         //使用默认的
        this->scan_bbt = nand_default_bbt;

    /* Select the device */
    this->select_chip(mtd, 0);       //片选,可惜在s3c2410 nand flash控制器中此操作为空

    /* Send the command for reading device ID */
    this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);//发送读ID命令

    /* Read manufacturer and device IDs */
    nand_maf_id = this->read_byte(mtd);            //读取生产商ID
    nand_dev_id = this->read_byte(mtd);            //读取设备ID

    /* Print and store flash device information */
    for (i = 0; nand_flash_ids[i].name != NULL; i++) {  
//保存着nand flash资料的nand_flash_ids表在include/linux/mtd/nand_ids.c文件中,详细见附录
               
        if (nand_dev_id != nand_flash_ids[i].id)    //比较设备ID
            continue;

        if (!mtd->name) mtd->name = nand_flash_ids[i].name;   //填充设备名
        this->chipsize = nand_flash_ids[i].chipsize << 20;    //填充设备大小
       
        /* New devices have all the information in additional id bytes */
        if (!nand_flash_ids[i].pagesize) {
            int extid;
            /* The 3rd id byte contains non relevant data ATM */
            extid = this->read_byte(mtd);
            /* The 4th id byte is the important one */
            extid = this->read_byte(mtd);
            /* Calc pagesize */
            mtd->oobblock = 1024 << (extid & 0x3);
            extid >>= 2;
            /* Calc oobsize */
            mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
            extid >>= 2;
            /* Calc blocksize. Blocksize is multiples of 64KiB */
            mtd->erasesize = (64 * 1024)  << (extid & 0x03);
            extid >>= 2;
            /* Get buswidth information */
            busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
       
        } else {
            /* Old devices have this data hardcoded in the
             * device id table */
            mtd->erasesize = nand_flash_ids[i].erasesize;   //填充檫除单元大小(16k)
            mtd->oobblock = nand_flash_ids[i].pagesize;     //填充页大小(512)
            mtd->oobsize = mtd->oobblock / 32;              //oob大小(512/32=16)
            busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;//获取nand flash表中定义的位宽
        }

        /* Try to identify manufacturer */            //比较生产商ID
        for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
            if (nand_manuf_ids[maf_id].id == nand_maf_id)
                break;
        }

        /* Check, if buswidth is correct. Hardware drivers should set
         * this correct ! */
        /用户定义的位宽与芯片实际的位宽不一致,取消nand flash的片选
        if (busw != (this->options & NAND_BUSWIDTH_16)) {   
            printk (KERN_INFO "NAND device: Manufacturer ID:"
                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
                nand_manuf_ids[maf_id].name , mtd->name);
            printk (KERN_WARNING
                "NAND bus width %d instead %d bit\n",
                    (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
                    busw ? 16 : 8);
            this->select_chip(mtd, -1);//在s3c2410 nand flash控制器驱动中,此操作为空操作
            return 1;   
        }
       
        /* Calculate the address shift from the page size */
        //计算页、可檫除单元、nand flash大小的偏移值 
        this->page_shift = ffs(mtd->oobblock) - 1;
        this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
        this->chip_shift = ffs(this->chipsize) - 1;

        /* Set the bad block position */
        //标注此nand flash为大页还是小页?
        this->badblockpos = mtd->oobblock > 512 ?
            NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;

        /* Get chip options, preserve non chip based options */
        //用户没指定的选项从nand flash表中获取补上
        this->options &= ~NAND_CHIPOPTIONS_MSK;
        this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
        /* Set this as a default. Board drivers can override it, if neccecary */
        this->options |= NAND_NO_AUTOINCR;
        /* Check if this is a not a samsung device. Do not clear the options
         * for chips which are not having an extended id.
         */   
        if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
            this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
       
        /* Check for AND chips with 4 page planes */
        if (this->options & NAND_4PAGE_ARRAY)
            this->erase_cmd = multi_erase_cmd;
        else
            this->erase_cmd = single_erase_cmd;     

        /* Do not replace user supplied command function ! */
        if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
            this->cmdfunc = nand_command_lp;
               
        printk (KERN_INFO "NAND device: Manufacturer ID:"
            " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
            nand_manuf_ids[maf_id].name , nand_flash_ids[i].name);
        break;
    }//好的,检测结束^_^

    if (!nand_flash_ids[i].name) {     
        printk (KERN_WARNING "No NAND device found!!!\n");
        this->select_chip(mtd, -1);
        return 1;
    }

    //统计一下同种类型的nand flash有多少块(我板上只有一块)
    for (i=1; i < maxchips; i++) {
        this->select_chip(mtd, i);

        /* Send the command for reading device ID */
        this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);

        /* Read manufacturer and device IDs */
        if (nand_maf_id != this->read_byte(mtd) ||
            nand_dev_id != this->read_byte(mtd))
            break;
    }
    if (i > 1)
        printk(KERN_INFO "%d NAND chips detected\n", i);
   
    /* Allocate buffers, if neccecary */
    if (!this->oob_buf) {
        size_t len;
        //求出一个檫除单元64K中oob所占用的总空间
        len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
        this->oob_buf = kmalloc (len, GFP_KERNEL);
        if (!this->oob_buf) {
            printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
            return -ENOMEM;
        }
        this->options |= NAND_OOBBUF_ALLOC;//oob空间已分配,置相应的标志位
    }
   
    if (!this->data_buf) {
        size_t len;
        len = mtd->oobblock + mtd->oobsize;//512+16=128
        this->data_buf = kmalloc (len, GFP_KERNEL);
        if (!this->data_buf) {
            if (this->options & NAND_OOBBUF_ALLOC)
                kfree (this->oob_buf);
            printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
            return -ENOMEM;
        }
        this->options |= NAND_DATABUF_ALLOC;//数据空间已分配,置相应的标志位
    }

    /* Store the number of chips and calc total size for mtd */
    this->numchips = i;//记录nand flash片数
    mtd->size = i * this->chipsize;//计算出nand flash总大小
    /* Convert chipsize to number of pages per chip -1. */
    this->pagemask = (this->chipsize >> this->page_shift) - 1;//(64M>>9)-1=128k-1=0x1ffff

    /* Preset the internal oob buffer */
    //oob_buf全部置为0xff
    memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));

    /* If no default placement scheme is given, select an
     * appropriate one */
    if (!this->autooob) {   //我们选用的是NAND_ECC_SOFT,autooob未设置
        /* Select the appropriate default oob placement scheme for
         * placement agnostic filesystems */
        switch (mtd->oobsize) {
        case 8:
            this->autooob = &nand_oob_8;
            break;
        case 16:
            this->autooob = &nand_oob_16;//我们的nand flash属于这一类
            break;
        case 64:
            this->autooob = &nand_oob_64;
            break;
        default:
            printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
                mtd->oobsize);
            BUG();
        }
    }
注:
    ECC的东西不是很懂,先跳过^_^  


    /* The number of bytes available for the filesystem to place fs dependend
     * oob data */
    mtd->oobavail = 0;
    for (i = 0; this->autooob->oobfree[i][1]; i++)
        mtd->oobavail += this->autooob->oobfree[i][1];

    /*
     * check ECC mode, default to software
     * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
     * fallback to software ECC
    */
    this->eccsize = 256;    /* set default eccsize */   
    this->eccbytes = 3;

    switch (this->eccmode) {
    case NAND_ECC_HW12_2048:
        if (mtd->oobblock < 2048) {
            printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
                   mtd->oobblock);
            this->eccmode = NAND_ECC_SOFT;
            this->calculate_ecc = nand_calculate_ecc;
            this->correct_data = nand_correct_data;
        } else
            this->eccsize = 2048;
        break;

    case NAND_ECC_HW3_512:
    case NAND_ECC_HW6_512:
    case NAND_ECC_HW8_512:
        if (mtd->oobblock == 256) {
            printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
            this->eccmode = NAND_ECC_SOFT;
            this->calculate_ecc = nand_calculate_ecc;
            this->correct_data = nand_correct_data;
        } else
            this->eccsize = 512; /* set eccsize to 512 */
        break;
           
    case NAND_ECC_HW3_256:
        break;
       
    case NAND_ECC_NONE:
        printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
        this->eccmode = NAND_ECC_NONE;
        break;

    case NAND_ECC_SOFT:   
        this->calculate_ecc = nand_calculate_ecc;
        this->correct_data = nand_correct_data;
        break;

    default:
        printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
        BUG();   
    }   

    /* Check hardware ecc function availability and adjust number of ecc bytes per
     * calculation step
    */
    switch (this->eccmode) {
    case NAND_ECC_HW12_2048:
        this->eccbytes += 4;
    case NAND_ECC_HW8_512:
        this->eccbytes += 2;
    case NAND_ECC_HW6_512:
        this->eccbytes += 3;
    case NAND_ECC_HW3_512:
    case NAND_ECC_HW3_256:
        if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
            break;
        printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
        BUG();   
    }
       
    mtd->eccsize = this->eccsize;
   
    /* Set the number of read / write steps for one page to ensure ECC generation */
    switch (this->eccmode) {
    case NAND_ECC_HW12_2048:
        this->eccsteps = mtd->oobblock / 2048;
        break;
    case NAND_ECC_HW3_512:
    case NAND_ECC_HW6_512:
    case NAND_ECC_HW8_512:
        this->eccsteps = mtd->oobblock / 512;
        break;
    case NAND_ECC_HW3_256:
    case NAND_ECC_SOFT:   
        this->eccsteps = mtd->oobblock / 256;
        break;
       
    case NAND_ECC_NONE:
        this->eccsteps = 1;
        break;
    }
   
    /* Initialize state, waitqueue and spinlock */
    this->state = FL_READY;
    init_waitqueue_head (&this->wq);
    spin_lock_init (&this->chip_lock);

    /* De-select the device */
    this->select_chip(mtd, -1);

    /* Invalidate the pagebuffer reference */
    this->pagebuf = -1;

    /* Fill in remaining MTD driver data */
    //填充mtd结构的其它部分
    mtd->type = MTD_NANDFLASH;
    mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
    mtd->ecctype = MTD_ECC_SW;
    mtd->erase = nand_erase;
    mtd->point = NULL;
    mtd->unpoint = NULL;
    mtd->read = nand_read;
    /* nand_read->nand_do_read_ecc->read_buf->s3c2410_nand_read_buf */
    mtd->write = nand_write;
    /* nand_write->nand_write_ecc->nand_write_page->write_buf->s3c2410_nand_write_buf */
    mtd->read_ecc = nand_read_ecc;
    mtd->write_ecc = nand_write_ecc;
    mtd->read_oob = nand_read_oob;
    mtd->write_oob = nand_write_oob;
    mtd->readv = NULL;
    mtd->writev = nand_writev;
    mtd->writev_ecc = nand_writev_ecc;
    mtd->sync = nand_sync;
    mtd->lock = NULL;
    mtd->unlock = NULL;
    mtd->suspend = NULL;
    mtd->resume = NULL;
    mtd->block_isbad = nand_block_isbad;
    mtd->block_markbad = nand_block_markbad;

    /* and make the autooob the default one */
    memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));

    mtd->owner = THIS_MODULE;
   
    /* Check, if we should skip the bad block table scan */
    if (this->options & NAND_SKIP_BBTSCAN)
        return 0;

    /* Build bad block table */
    return this->scan_bbt (mtd);
}

/**
 * nand_command - [DEFAULT] Send command to NAND device
 * @mtd:    MTD device structure
 * @command:    the command to be sent
 * @column:    the column address for this command, -1 if none
 * @page_addr:    the page address for this command, -1 if none
 *
 * Send command to NAND device. This function is used for small page
 * devices (256/512 Bytes per page)
 */
static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
    register struct nand_chip *this = mtd->priv;

    /* Begin command latch cycle */
    this->hwcontrol(mtd, NAND_CTL_SETCLE);    //选择写入S3C2410_NFCMD寄存器
    /*
     * Write out the command to the device.
     */
    if (command == NAND_CMD_SEQIN) {
        int readcmd;

        if (column >= mtd->oobblock) {        //读/写位置超出512,读oob_data
            /* OOB area */
            column -= mtd->oobblock;
            readcmd = NAND_CMD_READOOB;
        } else if (column < 256) {            //读/写位置在前512,使用read0命令
            /* First 256 bytes --> READ0 */
            readcmd = NAND_CMD_READ0;
        } else {                              //读/写位置在后512,使用read1命令
            column -= 256;
            readcmd = NAND_CMD_READ1;
        }
        this->write_byte(mtd, readcmd);        //写入具体命令
    }
    this->write_byte(mtd, command);

    /* Set ALE and clear CLE to start address cycle */
    /* 清楚CLE,锁存命令;置位ALE,开始传输地址 */
    this->hwcontrol(mtd, NAND_CTL_CLRCLE);      //锁存命令

    if (column != -1 || page_addr != -1) {
        this->hwcontrol(mtd, NAND_CTL_SETALE);  //选择写入S3C2410_NFADDR寄存器

        /* Serially input address */
        if (column != -1) {
            /* Adjust columns for 16 bit buswidth */
            if (this->options & NAND_BUSWIDTH_16)
                column >>= 1;
            this->write_byte(mtd, column);      //写入列地址
        }
        if (page_addr != -1) {                  //写入页地址(分三个字节写入)
            this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
            this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
            /* One more address cycle for devices > 32MiB */
            if (this->chipsize > (32 << 20))
                this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
        }
        /* Latch in address */
        /* 锁存地址 */
        this->hwcontrol(mtd, NAND_CTL_CLRALE);
    }

    /*
     * program and erase have their own busy handlers
     * status and sequential in needs no delay
    */
    switch (command) {
           
    case NAND_CMD_PAGEPROG:
    case NAND_CMD_ERASE1:
    case NAND_CMD_ERASE2:
    case NAND_CMD_SEQIN:
    case NAND_CMD_STATUS:
        return;

    case NAND_CMD_RESET:      //复位操作
                              // 等待nand flash become ready
        if (this->dev_ready)  //判断nand flash 是否busy(1:ready 0:busy)
            break;
        udelay(this->chip_delay);
        this->hwcontrol(mtd, NAND_CTL_SETCLE);
        this->write_byte(mtd, NAND_CMD_STATUS);
        this->hwcontrol(mtd, NAND_CTL_CLRCLE);
        while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
        return;

    /* This applies to read commands */   
    default:
        /*
         * If we don't have access to the busy pin, we apply the given
         * command delay
        */
        if (!this->dev_ready) {
            udelay (this->chip_delay);//稍作延迟
            return;
        }   
    }
    /* Apply this short delay always to ensure that we do wait tWB in
     * any case on any machine. */
    ndelay (100);

    nand_wait_ready(mtd);
}


/*
 * Wait for the ready pin, after a command
 * The timeout is catched later.
 */
static void nand_wait_ready(struct mtd_info *mtd)
{
    struct nand_chip *this = mtd->priv;
    unsigned long    timeo = jiffies + 2;

    /* wait until command is processed or timeout occures */
    do {
        if (this->dev_ready(mtd))          //简单调用this->dev_ready(s3c2410_nand_devready)函数                                             等待nand flash become ready
            return;
        touch_softlockup_watchdog();
    } while (time_before(jiffies, timeo));   
}

/**
 * nand_wait - [DEFAULT]  wait until the command is done
 * @mtd:    MTD device structure
 * @this:    NAND chip structure
 * @state:    state to select the max. timeout value
 *
 * Wait for command done. This applies to erase and program only
 * Erase can take up to 400ms and program up to 20ms according to
 * general NAND and SmartMedia specs
 *
*/
/* 等待知道命令传输完成,适用于檫除和写入命令 */
static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
{

    unsigned long    timeo = jiffies;
    int    status;
   
    if (state == FL_ERASING)
         timeo += (HZ * 400) / 1000;//檫除操作的话,时间相对要长一些
    else
         timeo += (HZ * 20) / 1000;

    /* Apply this short delay always to ensure that we do wait tWB in
     * any case on any machine. */
    ndelay (100);

    if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
        this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
    else   
        this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);

    while (time_before(jiffies, timeo)) {       
        /* Check, if we were interrupted */
        if (this->state != state)
            return 0;
        /* 等待nand flash become ready */
        if (this->dev_ready) {
            if (this->dev_ready(mtd))
                break;   
        } else {
            if (this->read_byte(mtd) & NAND_STATUS_READY)
                break;
        }
        cond_resched();
    }
    status = (int) this->read_byte(mtd);
    return status;
}

/**
 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 * 检查nand flash中某一页是否为坏块
 * @mtd:    MTD device structure
 * @ofs:    offset from device start
 * @getchip:    0, if the chip is already selected
 *
 * Check, if the block is bad.
 */
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
    int page, chipnr, res = 0;
    struct nand_chip *this = mtd->priv;
    u16 bad;

    if (getchip) {
        page = (int)(ofs >> this->page_shift);
        chipnr = (int)(ofs >> this->chip_shift);

        /* Grab the lock and see if the device is available */
        nand_get_device (this, mtd, FL_READING);

        /* Select the NAND device */
        this->select_chip(mtd, chipnr);
    } else
        page = (int) ofs;   

    if (this->options & NAND_BUSWIDTH_16) {
        this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
        bad = cpu_to_le16(this->read_word(mtd));
        if (this->badblockpos & 0x1)
            bad >>= 1;
        if ((bad & 0xFF) != 0xff)
            res = 1;
    } else {
        this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
        /* 发送读oob_data命令(oob_data的badblockpos (第6)位记录着坏块标志) */
        if (this->read_byte(mtd) != 0xff)//坏块
            res = 1;
    }
       
    if (getchip) {
        /* Deselect and wake up anyone waiting on the device */
        nand_release_device(mtd);
    }   
   
    return res;
}

/**
 * nand_default_block_markbad - [DEFAULT] mark a block bad
 * 标志坏块
 * @mtd:    MTD device structure
 * @ofs:    offset from device start
 *
 * This is the default implementation, which can be overridden by
 * a hardware specific driver.
*/
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
    struct nand_chip *this = mtd->priv;
    u_char buf[2] = {0, 0};
    size_t    retlen;
    int block;
   
    /* Get block number */
    block = ((int) ofs) >> this->bbt_erase_shift;
    if (this->bbt)
        this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
    /*
       这个暂时不是很好说:内核维护一个标志bad block表,使用2bit来表示1block。
       这个表在开机的时候通过扫描nand flash每个block的头两页的oob数据来生成,
       发现坏块后至相应的block标志位为非零(有时候至3,但有时候至1,还没搞明白有什么不同)
     */

    /* Do we have a flash based bad block table ? */
    if (this->options & NAND_USE_FLASH_BBT)//samsun nand flash不属于这种,暂时不去研究,以后同
        return nand_update_bbt (mtd, ofs);
       
    /* We write two bytes, so we dont have to mess with 16 bit access */
    ofs += mtd->oobsize + (this->badblockpos & ~0x01);//???????????????
    return nand_write_oob (mtd, ofs , 2, &retlen, buf);
}

/**
 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
 * 检验nand flash与buffer的数据是否一致
 * @mtd:    MTD device structure
 * @buf:    buffer containing the data to compare
 * @len:    number of bytes to compare
 *
 * Default verify function for 8bit buswith
 */
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
    int i;
    struct nand_chip *this = mtd->priv;

    for (i=0; i        if (buf[i] != readb(this->IO_ADDR_R))
            return -EFAULT;

    return 0;
}

/**
 * nand_default_bbt - [NAND Interface] Select a default bad block table for the device
 * @mtd:    MTD device structure
 *
 * This function selects the default bad block table
 * support for the device and calls the nand_scan_bbt function
 *
*/
int nand_default_bbt (struct mtd_info *mtd)
{
    struct nand_chip *this = mtd->priv;
   
    /* Default for AG-AND. We must use a flash based
     * bad block table as the devices have factory marked
     * _good_ blocks. Erasing those blocks leads to loss
     * of the good / bad information, so we _must_ store
     * this information in a good / bad table during
     * startup
    */
    if (this->options & NAND_IS_AND) {
        /* Use the default pattern descriptors */
        if (!this->bbt_td) {   
            this->bbt_td = &bbt_main_descr;
            this->bbt_md = &bbt_mirror_descr;
        }   
        this->options |= NAND_USE_FLASH_BBT;
        return nand_scan_bbt (mtd, &agand_flashbased);
    }
   
   
    /* Is a flash based bad block table requested ? */
    if (this->options & NAND_USE_FLASH_BBT) {
        /* Use the default pattern descriptors */   
        if (!this->bbt_td) {   
            this->bbt_td = &bbt_main_descr;
            this->bbt_md = &bbt_mirror_descr;
        }
        if (!this->badblock_pattern) {
            this->badblock_pattern = (mtd->oobblock > 512) ?
                &largepage_flashbased : &smallpage_flashbased;
        }
    } else {      //samsun nand flash的坏块表不存在与nand flash里面,需要扫描来生成。
        this->bbt_td = NULL;
        this->bbt_md = NULL;
        if (!this->badblock_pattern) {
            this->badblock_pattern = (mtd->oobblock > 512) ?
                &largepage_memorybased : &smallpage_memorybased;
        }
    }
    return nand_scan_bbt (mtd, this->badblock_pattern);
}

/**
 * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
 * @mtd:    MTD device structure
 * @bd:        descriptor for the good/bad block search pattern
 *
 * The function checks, if a bad block table(s) is/are already
 * available. If not it scans the device for manufacturer
 * marked good / bad blocks and writes the bad block table(s) to
 * the selected place.
 *
 * The bad block table memory is allocated here. It must be freed
 * by calling the nand_free_bbt function.
 *
*/
int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
{
    struct nand_chip *this = mtd->priv;
    int len, res = 0;
    uint8_t *buf;
    struct nand_bbt_descr *td = this->bbt_td;
    struct nand_bbt_descr *md = this->bbt_md;

    len = mtd->size >> (this->bbt_erase_shift + 2);
    /* Allocate memory (2bit per block) */
    /* 2bit per block=(2/8)byte per block,所以上面要多右移2位 */
    this->bbt = kmalloc (len, GFP_KERNEL);
    if (!this->bbt) {
        printk (KERN_ERR "nand_scan_bbt: Out of memory\n");
        return -ENOMEM;
    }
    /* Clear the memory bad block table */
    memset (this->bbt, 0x00, len);

    /* If no primary table decriptor is given, scan the device
     * to build a memory based bad block table
     */
    if (!td) {
        if ((res = nand_memory_bbt(mtd, bd))) {
            printk (KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT\n");
            kfree (this->bbt);
            this->bbt = NULL;
        }
        return res;
    }

    /* Allocate a temporary buffer for one eraseblock incl. oob */
    /* 分配1 block所需要的oob data空间 */
    len = (1 << this->bbt_erase_shift);
    len += (len >> this->page_shift) * mtd->oobsize;
    buf = kmalloc (len, GFP_KERNEL);
    if (!buf) {
        printk (KERN_ERR "nand_bbt: Out of memory\n");
        kfree (this->bbt);
        this->bbt = NULL;
        return -ENOMEM;
    }
   
    //由于td、md均为NULL,一下函数基本不起作用,先不去研究它
    /* Is the bbt at a given page ? */
    if (td->options & NAND_BBT_ABSPAGE) {
        res = read_abs_bbts (mtd, buf, td, md);
    } else {   
        /* Search the bad block table using a pattern in oob */
        res = search_read_bbts (mtd, buf, td, md);
    }   

    if (res)
        res = check_create (mtd, buf, bd);
   
    /* Prevent the bbt regions from erasing / writing */
    mark_bbt_region (mtd, td);
    if (md)
        mark_bbt_region (mtd, md);
   
    kfree (buf);
    return res;
}

/**
 * nand_memory_bbt - [GENERIC] create a memory based bad block table
 * @mtd:    MTD device structure
 * @bd:        descriptor for the good/bad block search pattern
 *
 * The function creates a memory based bbt by scanning the device
 * for manufacturer / software marked good / bad blocks
*/
static inline int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
{
    struct nand_chip *this = mtd->priv;

    bd->options &= ~NAND_BBT_SCANEMPTY;
    //我们只需要扫描oob data,不需要扫描全部(512+16bytes的数据)
    return create_bbt (mtd, this->data_buf, bd, -1);
}

/**
 * create_bbt - [GENERIC] Create a bad block table by scanning the device
 * @mtd:    MTD device structure
 * @buf:    temporary buffer
 * @bd:        descriptor for the good/bad block search pattern
 * @chip:    create the table for a specific chip, -1 read all chips.
 *        Applies only if NAND_BBT_PERCHIP option is set
 *
 * Create a bad block table by scanning the device
 * for the given good/bad block identify pattern
 */
static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
{
    struct nand_chip *this = mtd->priv;
    int i, j, numblocks, len, scanlen;
    int startblock;
    loff_t from;
    size_t readlen, ooblen;

    printk (KERN_INFO "Scanning device for bad blocks\n");

    if (bd->options & NAND_BBT_SCANALLPAGES)//扫描所有都页
        len = 1 << (this->bbt_erase_shift - this->page_shift);//求出每block所含的page数
    else {
        if (bd->options & NAND_BBT_SCAN2NDPAGE)//只检查2 page
            len = 2;
        else   
            len = 1;//只检查1 page
    }

    if (!(bd->options & NAND_BBT_SCANEMPTY)) {
        /* We need only read few bytes from the OOB area */
        /* 我们只需要检查OOB的某些数据 */
        scanlen = ooblen = 0;
        readlen = bd->len;
    } else {
        /* Full page content should be read */
        /* 读取整页内容 */
        scanlen    = mtd->oobblock + mtd->oobsize;
        readlen = len * mtd->oobblock;
        ooblen = len * mtd->oobsize;
    }

    if (chip == -1) {
        /* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
         * makes shifting and masking less painful */
        /* 计算出nand flash所包含都block数目(注意这里总数目经过林乘2操作)*/
        numblocks = mtd->size >> (this->bbt_erase_shift - 1);
        startblock = 0;
        from = 0;
    } else {
        if (chip >= this->numchips) {
            printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
                chip + 1, this->numchips);
            return -EINVAL;
        }
        numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
        startblock = chip * numblocks;
        numblocks += startblock;
        from = startblock << (this->bbt_erase_shift - 1);
    }
   
    for (i = startblock; i < numblocks;) {
        int ret;
       
        if (bd->options & NAND_BBT_SCANEMPTY)        //整页数据读取
            if ((ret = nand_read_raw (mtd, buf, from, readlen, ooblen)))
                return ret;

        for (j = 0; j < len; j++) {
            if (!(bd->options & NAND_BBT_SCANEMPTY)) {
                size_t retlen;
               
                /* Read the full oob until read_oob is fixed to
                 * handle single byte reads for 16 bit buswidth */
                /* 读取当前页的oob区的所有数据 */
                ret = mtd->read_oob(mtd, from + j * mtd->oobblock,
                            mtd->oobsize, &retlen, buf);
                if (ret)
                    return ret;
                /* 检查oob data的bad block标志位,判断是否是坏块 */
                if (check_short_pattern (buf, bd)) {
                    this->bbt[i >> 3] |= 0x03 << (i & 0x6);
                /* 注意:这里i=实际值*2。由于一个block的状态用2bit来表示,那么一个字节可以存放4个block的状态。
                   这里i>>3刚好是实际block/4,4个block的状态刚好存放在this->bbt所指向的一个字节里面
                 */
                    printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
                        i >> 1, (unsigned int) from);
                    break;
                }
            } else {
                if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
                    this->bbt[i >> 3] |= 0x03 << (i & 0x6);
                    printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
                        i >> 1, (unsigned int) from);
                    break;
                }
            }
        }
        i += 2;//更新block的序号
        from += (1 << this->bbt_erase_shift);//更新nand flash的地址
    }
    return 0;
}

/**
 * nand_release - [NAND Interface] Free resources held by the NAND device
 * @mtd:    MTD device structure
*/
void nand_release (struct mtd_info *mtd)
{
    struct nand_chip *this = mtd->priv;

#ifdef CONFIG_MTD_PARTITIONS
    /* Deregister partitions */
    del_mtd_partitions (mtd);
#endif
    /* Deregister the device */
    del_mtd_device (mtd);

    /* Free bad block table memory, if allocated */
    if (this->bbt)
        kfree (this->bbt);
    /* Buffer allocated by nand_scan ? */
    if (this->options & NAND_OOBBUF_ALLOC)
        kfree (this->oob_buf);
    /* Buffer allocated by nand_scan ? */
    if (this->options & NAND_DATABUF_ALLOC)
        kfree (this->data_buf);
}

附录:
/arch/arm/mach-s3c2410/dev.c文件:

static struct mtd_partition partition_info[]={
  [0]={
     name    :"vivi",
     size    :0x20000,
     offset  :0,
  },[1]={
     name    :"param",
     size    :0x10000,
     offset  :0x20000,
  },[2]={
     name    :"kernel",
     size    :0x1d0000,
     offset  :0x30000,
  },[3]={
     name    :"root",
     size    :0x3c00000,
     offset  :0x200000,
  }
};

struct s3c2410_nand_set nandset={
    nr_partitions    :4,
    partitions       :partition_info,
};

struct s3c2410_platform_nand superlpplatform={
    tacls     :0,
    twrph0    :30,
    twrph1    :0,
    sets      :&nandset,
    nr_sets   :1,
};

struct platform_device s3c_device_nand = {
    .name          = "s3c2410-nand",
    .id          = -1,
    .num_resources      = ARRAY_SIZE(s3c_nand_resource),
    .resource      = s3c_nand_resource,
    .dev={
        .platform_data=&superlpplatform
    }
};

nand_flash_ids表
/driver/mtd/nand/nand_ids.c文件:
struct nand_flash_dev nand_flash_ids[] = {
................................................................................
    {"NAND 64MiB 3,3V 8-bit",     0x76, 512, 64, 0x4000, 0},
................................................................................
};
注:
    这里只列出常用的samsun 64M Nand Flash的资料,对应的信息请看该结构体的定义:
struct nand_flash_dev {
    char *name;
    int id;
    unsigned long pagesize;
    unsigned long chipsize;
    unsigned long erasesize;
    unsigned long options;
};
可知该nand flash 设备ID号为0x76,页大小为512,大小为64(M),檫除单元大小为16(K)。
阅读(989) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~