前提概要:
JDK本身提供了很多方便的JVM性能调优监控工具,除了集成式的VisualVM和jConsole外,还有jps、jstack、jmap、jhat、jstat、hprof等小巧的工具,每一种工具都有其自身的特点,用户可以根据你需要检测的应用或者程序片段的状况,适当的选择相应的工具进行检测。接下来的两个专题分别会讲VisualVM的具体应用。
现实企业级Java开发中,有时候我们会碰到下面这些问题:
-
OutOfMemoryError,内存不足
-
内存泄露
-
线程死锁
-
锁争用(Lock Contention)
-
Java进程消耗CPU过高
-
......
这些问题在日常开发中可能被很多人忽视(比如有的人遇到上面的问题只是重启服务器或者调大内存,而不会深究问题根源),但能够理解并解决这些问题是Java程序员进阶的必备要求。
一、 jps(Java Virtual Machine Process Status Tool) : 基础工具
实际中这是最常用的命令,下面要介绍的小工具更多的都是先要使用jps查看出当前有哪些Java进程,获取该Java进程的id后再对该进程进行处理。
jps主要用来输出JVM中运行的进程状态信息。语法格式如下:
Java代码
-
jps [options] [hostid]
如果不指定hostid就默认为当前主机或服务器。
命令行参数选项说明如下:
Java代码
-
-q 不输出类名、Jar名和传入main方法的参数
-
-m 输出传入main方法的参数
-
-l 输出main类或Jar的全限名
-
-v 输出传入JVM的参数
比如
1、我现在有一个WordCountTopo的Strom程序正在本机运行。
2、使用java -jar deadlock.jar & 启动一个线程死锁的程序
Java代码
-
wangsheng@WANGSHENG-PC /E
-
$ jps -ml
-
14200 deadlock.jar
-
13952 com.wsheng.storm.topology.WordCountTopo D://input/ 3
-
13248 sun.tools.jps.Jps -ml
-
9728
二、 jstack jstack主要用来查看某个Java进程内的线程堆栈信息。语法格式如下:
Java代码
-
jstack [option] pid
-
jstack [option] executable core
-
jstack [option] [server-id@]remote-hostname-or-ip
Java代码
-
命令行参数选项说明如下:
Java代码
-
-l long listings,会打印出额外的锁信息,在发生死锁时可以用jstack -l pid来观察锁持有情况
-
-m mixed mode,不仅会输出Java堆栈信息,还会输出C/C++堆栈信息(比如Native方法)
jstack可以定位到线程堆栈,根据堆栈信息我们可以定位到具体代码,所以它在JVM性能调优中使用得非常多。
下面我们来一个实例:
找出某个Java进程中最耗费CPU的Java线程并定位堆栈信息,用到的命令有ps、top、printf、jstack、grep。
第一步: 先找出Java进程ID,服务器上的Java应用名称为wordcount.jar:
Java代码
-
[root@storm-master home]# ps -ef | grep wordcount | grep -v grep
-
root 2860 2547 13 02:09 pts/0 00:02:03 java -jar wordcount.jar /home/input 3
得到进程ID为2860,
第二步:找出该进程内最耗费CPU的线程,可以使用如下3个命令,这里我们使用第3个命令得出如下结果:
Java代码
-
1)ps -Lfp pid : 即 ps -Lfp 2860
-
2)ps -mp pid -o THREAD, tid, time :即 ps -mp 2860 -o THREAD,tid,time
-
3)top -Hp pid: 即 top -Hp 2860
-
用第三个,输出如下:
TIME列就是各个Java线程耗费的CPU时间,显然CPU时间最长的是ID为2968的线程,用
Java代码
-
printf "%x\n" 2968
得到2968的十六进制值为b98,下面会用到。
第三步:终于轮到jstack上场了,它用来输出进程2860的堆栈信息,然后根据线程ID的十六进制值grep,如下:
Java代码
-
[root@storm-master home]# jstack 2860 | grep b98
-
"SessionTracker" prio=10 tid=0x00007f55a44e4800 nid=0xb53 in Object.wait() [0x00007f558e06c000
可以看到CPU消耗在SessionTracker这个类的Object.wait(),于是就能很容易的定位到相关的代码了。
三、 jmap(Memory Map)和 jhat(Java Heap Analysis Tool):
jmap导出堆内存,然后使用jhat来进行分析
jmap用来查看堆内存使用状况,一般结合jhat使用。
jmap语法格式如下:
Java代码
-
jmap [option] pid
-
jmap [option] executable core
-
jmap [option] [server-id@]remote-hostname-or-ip
如果运行在64位JVM上,由于linux操作系统的不同,可能需要指定-J-d64命令选项参数。
1、打印进程的类加载器和类加载器加载的持久代对象信息: jmap -permstat pid
个人感觉这个不是太有用
输出:类加载器名称、对象是否存活(不可靠)、对象地址、父类加载器、已加载的类大小等信息,如图:
2、查看进程堆内存使用情况:包括使用的GC算法、堆配置参数和各代中堆内存使用:jmap -heap pid
比如下面的例子
Java代码
-
[root@storm-master home]# jmap -heap 2860
-
Attaching to process ID 2860, please wait...
-
Debugger attached successfully.
-
Server compiler detected.
-
JVM version is 20.45-b01
-
-
using thread-local object allocation.
-
Mark Sweep Compact GC
-
-
Heap Configuration:
-
MinHeapFreeRatio = 40
-
MaxHeapFreeRatio = 70
-
MaxHeapSize = 257949696 (246.0MB)
-
NewSize = 1310720 (1.25MB)
-
MaxNewSize = 17592186044415 MB
-
OldSize = 5439488 (5.1875MB)
-
NewRatio = 2
-
SurvivorRatio = 8
-
PermSize = 21757952 (20.75MB)
-
MaxPermSize = 85983232 (82.0MB)
-
-
Heap Usage:
-
New Generation (Eden + 1 Survivor Space):
-
capacity = 12189696 (11.625MB)
-
used = 6769392 (6.4557952880859375MB)
-
free = 5420304 (5.1692047119140625MB)
-
55.53372290826613% used
-
Eden Space:
-
capacity = 10878976 (10.375MB)
-
used = 6585608 (6.280525207519531MB)
-
free = 4293368 (4.094474792480469MB)
-
60.53518272307982% used
-
From Space:
-
capacity = 1310720 (1.25MB)
-
used = 183784 (0.17527008056640625MB)
-
free = 1126936 (1.0747299194335938MB)
-
14.0216064453125% used
-
To Space:
-
capacity = 1310720 (1.25MB)
-
used = 0 (0.0MB)
-
free = 1310720 (1.25MB)
-
0.0% used
-
tenured generation:
-
capacity = 26619904 (25.38671875MB)
-
used = 15785896 (15.054603576660156MB)
-
free = 10834008 (10.332115173339844MB)
-
59.30110040967841% used
-
Perm Generation:
-
capacity = 33554432 (32.0MB)
-
used = 33323352 (31.779624938964844MB)
-
free = 231080 (0.22037506103515625MB)
-
99.31132793426514% used
3、查看堆内存中的对象数目、大小统计直方图,如果带上live则只统计活对象:jmap -histo[:live] pid
Java代码
-
[root@storm-master Desktop]# jmap -histo 2860
-
-
num #instances #bytes class name
-
----------------------------------------------
-
1: 13917 11432488 [B
-
2: 6117 6181448
-
3: 39520 6004504
-
4: 6117 5517072
-
5: 39520 5383280
-
6: 5148 3150944
-
7: 29954 2810640 [C
-
8: 50179 2469272
-
9: 42122 1791704 [Ljava.lang.Object;
-
10: 1804 961464
-
11: 11747 941200 [Ljava.util.HashMap$Entry;
-
12: 28786 921152 java.lang.String
-
13: 6347 660088 java.lang.Class
-
14: 7374 625616 [S
-
15: 11740 563520 java.util.HashMap
-
16: 23447 562728 clojure.lang.PersistentHashMap$BitmapIndexedNode
-
17: 10980 351360 clojure.lang.Symbol
-
18: 8544 341760 java.lang.ref.SoftReference
-
19: 8028 336632 [[I
-
20: 3944 283968 java.lang.reflect.Constructor
-
21: 4744 227712 java.nio.HeapByteBuffer
-
22: 6854 219328 java.util.AbstractList$Itr
-
23: 2185 195192 [I
-
24: 3854 184992 java.nio.HeapCharBuffer
-
25: 5500 176000 java.util.concurrent.ConcurrentHashMap$HashEntry
class name是对象类型,说明如下:
Java代码
-
B byte
-
C char
-
D double
-
F float
-
I int
-
J long
-
Z boolean
-
[ 数组,如[I表示int[]
-
[L+类名 其他对象
4、还有一个很常用的情况是:用jmap把进程内存使用情况dump到文件中,再用jhat分析查看。需要注意的是 dump出来的文件还可以用MAT、VisualVM等工具查看。
jmap进行dump命令格式如下:
Java代码
-
jmap -dump:format=b,file=dumpFileName pid
我一样地对上面进程ID为2860进行Dump:
Java代码
-
[root@storm-master Desktop]# jmap -dump:format=b,file=/home/dump.dat 2860
-
Dumping heap to /home/dump.dat ...
-
Heap dump file created
然后使用jhat来对上面dump出来的内容进行分析
Java代码
-
[root@storm-master Desktop]# jhat -port 8888 /home/dump.dat
-
Reading from /home/dump.dat...
-
Dump file created Sat Aug 01 04:21:12 PDT 2015
-
Snapshot read, resolving...
-
Resolving 411123 objects...
-
Chasing references, expect 82 dots..................................................................................
-
Eliminating duplicate references..................................................................................
-
Snapshot resolved.
-
Started HTTP server on port 8888
-
Server is ready.
注意如果Dump文件太大,可能需要加上-J-Xmx512m参数以指定最大堆内存,即jhat -J-Xmx512m -port 8888 /home/dump.dat。然后就可以在浏览器中输入主机地址:8888查看了:
点击每一个蓝色的超链接,你都会看到其相关更具体的信息,而最后一项更是支持OQL(对象查询语言)。
四、jstat(JVM统计监测工具): 看看各个区内存和GC的情况
语法格式如下:
Java代码
-
jstat [ generalOption | outputOptions vmid [interval[s|ms] [count]] ]
vmid是Java虚拟机ID,在Linux/Unix系统上一般就是进程ID。interval是采样时间间隔。count是采样数目。比如下面输出的是GC信息,采样时间间隔为250ms,采样数为6:
Java代码
-
[root@storm-master Desktop]# jstat -gc 2860 250 6
要明白上面各列的意义,先看JVM堆内存布局:
可以看出:
Java代码
-
堆内存 = 年轻代 + 年老代 + 永久代
-
年轻代 = Eden区 + 两个Survivor区(From和To)
现在来解释各列含义:
Java代码
-
S0C、S1C、S0U、S1U:Survivor 0/1区容量(Capacity)和使用量(Used)
-
EC、EU:Eden区容量和使用量
-
OC、OU:年老代容量和使用量
-
PC、PU:永久代容量和使用量
-
YGC、YGT:年轻代GC次数和GC耗时
-
FGC、FGCT:Full GC次数和Full GC耗时
-
GCT:GC总耗时
五、hprof(Heap/CPU Profiling Tool): hprof能够展现CPU使用率,统计堆内存使用情况。
HPROF: 一个Heap/CPU Profiling工具:J2SE中提供了一个简单的命令行工具来对java程序的cpu和heap进行 profiling,叫做HPROF。HPROF实际上是JVM中的一个native的库,它会在JVM启动的时候通过命令行参数来动态加载,并成为 JVM进程的一部分。若要在java进程启动的时候使用HPROF,用户可以通过各种命令行参数类型来使用HPROF对java进程的heap或者 (和)cpu进行profiling的功能。HPROF产生的profiling数据可以是二进制的,也可以是文本格式的。这些日志可以用来跟踪和分析 java进程的性能问题和瓶颈,解决内存使用上不优的地方或者程序实现上的不优之处。二进制格式的日志还可以被JVM中的HAT工具来进行浏览和分析,用 以观察java进程的heap中各种类型和数据的情况。在J2SE 5.0以后的版本中,HPROF已经被并入到一个叫做Java Virtual Machine Tool Interface(JVM TI)中。
语法格式如下:
Java代码
-
java -agentlib:hprof[=options] ToBeProfiledClass
-
java -Xrunprof[:options] ToBeProfiledClass
-
javac -J-agentlib:hprof[=options] ToBeProfiledClass
完整的命令选项如下:
Java代码
-
Option Name and Value Description Default
-
--------------------- ----------- -------
-
heap=dump|sites|all heap profiling all
-
cpu=samples|times|old CPU usage off
-
monitor=y|n monitor contention n
-
format=a|b text(txt) or binary output a
-
file= write data to file java.hprof[.txt]
-
net=: send data over a socket off
-
depth= stack trace depth 4
-
interval= sample interval in ms 10
-
cutoff= output cutoff point 0.0001
-
lineno=y|n line number in traces? y
-
thread=y|n thread in traces? n
-
doe=y|n dump on exit? y
-
msa=y|n Solaris micro state accounting n
-
force=y|n force output to y
-
verbose=y|n print messages about dumps y
- Get sample cpu information every 20 millisec, with a stack depth of 3:
java -agentlib:hprof=cpu=samples,interval=20,depth=3 classname
- Get heap usage information based on the allocation sites:
java -agentlib:hprof=heap=sites classname
上面每隔20毫秒采样CPU消耗信息,堆栈深度为3,生成的profile文件名称是java.hprof.txt,在当前目录。
默认情况下,java进程profiling的信息(sites和dump)都会被 写入到一个叫做java.hprof.txt的文件中。大多数情况下,该文件中都会对每个trace,threads,objects包含一个ID,每一 个ID代表一个不同的观察对象。通常,traces会从300000开始。 默认,force=y,会将所有的信息全部输出到output文件中,所以如果含有 多个JVMs都采用的HRPOF enable的方式运行,最好将force=n,这样能够将单独的JVM的profiling信息输出到不同的指定文件。 interval选项只在 cpu=samples的情况下生效,表示每隔多少毫秒对java进程的cpu使用情况进行一次采集。 msa选项仅仅在Solaris系统下才有效, 表示会使用Solaris下的Micro State Accounting功能
第二部分: 实例部分:
该部分将使用相关的实例和前面提到的JVM性能调优工具来进行性能诊断。
1、使用jstack来分析死锁问题:
上面说明中提到 jstack主要用来查看某个Java进程内的线程堆栈信息,您可以使用它查明问题。jstack [-l] ,pid可以通过使用jps命令来查看当前Java程序的pid值,-l是可选参数,它可以显示线程阻塞/死锁情况
Java代码
-
package com.wsheng.aggregator.thread.performance;
-
-
import org.springframework.stereotype.Component;
-
-
/**
-
* Dead lock example
-
*
-
* @author Josh Wang(Sheng)
-
*
-
* @email josh_wang23@hotmail.com
-
*/
-
@Component
-
public class DeadLock {
-
-
public static void main(String[] args) {
-
System.out.println(" start the example ----- ");
-
final Object obj_1 = new Object(), obj_2 = new Object();
-
-
Thread t1 = new Thread("t1") {
-
@Override
-
public void run() {
-
synchronized (obj_1) {
-
try {
-
System.out.println("thread t1 start...");
-
Thread.sleep(3000);
-
} catch (InterruptedException e) {e.printStackTrace();}
-
-
synchronized (obj_2) {
-
System.out.println("thread t1 done....");
-
}
-
}
-
}
-
};
-
-
Thread t2 = new Thread("t2") {
-
@Override
-
public void run() {
-
synchronized (obj_2) {
-
try {
-
System.out.println("thread t2 start...");
-
Thread.sleep(3000);
-
} catch (InterruptedException e) {e.printStackTrace();}
-
-
synchronized (obj_1) {
-
System.out.println("thread t2 done...");
-
}
-
}
-
}
-
};
-
-
t1.start();
-
t2.start();
-
}
-
-
}
以上DeadLock类是一个死锁的例子,假使在我们不知情的情况下,运行DeadLock后,发现等了N久都没有在屏幕打印线程完成信息。这个时候我们就可以使用jps查看该程序的pid值和使用jstack来生产堆栈结果问题。
Java代码
-
java -jar deadlock.jar com.wsheng.aggregator.thread.performance.DeadLock &
Java代码
-
$ jps
-
3076 Jps
-
448 DeadLock
-
$ jstack -l 448 > deadlock.jstack
结果文件deadlock.jstack内容如下:
从这个结果文件我们一看到发现了一个死锁,具体是线程t2在等待线程t1,而线程t1在等待线程t2造成的,同时也记录了线程的堆栈和代码行数,通过这个堆栈和行数我们就可以去检查对应的代码块,从而发现问题和解决问题。
可通过下面的代码解决死锁问题:
Java代码
-
import java.util.concurrent.locks.Lock;
-
import java.util.concurrent.locks.ReentrantLock;
-
-
/**
-
* Dead lock example
-
*
-
* @author Josh Wang(Sheng)
-
*
-
* @email josh_wang23@hotmail.com
-
*/
-
public class DeadLock2Live {
-
-
public static void main(String[] args) {
-
System.out.println(" start the example ----- ");
-
final Lock lock = new ReentrantLock();
-
-
Thread t1 = new Thread("t1") {
-
@Override
-
public void run() {
-
try {
-
lock.lock();
-
Thread.sleep(3000);
-
System.out.println("thread t1 done.");
-
} catch (InterruptedException e) {
-
e.printStackTrace();
-
} finally {
-
lock.unlock();
-
}
-
}
-
};
-
-
Thread t2 = new Thread("t2") {
-
@Override
-
public void run() {
-
try {
-
lock.lock();
-
Thread.sleep(3000);
-
System.out.println("thread t2 done.");
-
-
-
} catch (InterruptedException e) {
-
e.printStackTrace();
-
} finally {
-
lock.unlock();
-
}
-
}
-
};
-
-
t1.start();
-
t2.start();
-
-
}
-
-
}
2、继续使用jstack来分析HashMap在多线程情况下的死锁问题:
对于如下代码,使用10个线程来处理提交的2000个任务,每个任务会分别循环往hashmap中分别存入和取出1000个数,通过测试发现,程序并不能完整执行完成。[PS:该程序能不能成功执行完,有时也取决于所使用的服务器的运行状况,我在笔记本上测试的时候,大多时候该程序不能成功执行完成,有时会出现CPU转速加快,发热等情况]
Java代码
-
import java.util.HashMap;
-
import java.util.Map;
-
import java.util.concurrent.Callable;
-
import java.util.concurrent.ExecutionException;
-
import java.util.concurrent.ExecutorService;
-
import java.util.concurrent.Executors;
-
/**
-
* @author Josh Wang(Sheng)
-
*
-
* @email josh_wang23@hotmail.com
-
*/
-
public class HashMapDeadLock implements Callable {
-
-
private static ExecutorService threadPool = Executors.newFixedThreadPool(10);
-
-
private static Map results = new HashMap<>();
-
-
@Override
-
public Integer call() throws Exception {
-
results.put(1, 1);
-
results.put(2, 2);
-
results.put(3, 3);
-
-
for (int i = 0; i < 1000; i++) {
-
results.put(i, i);
-
}
-
-
Thread.sleep(1000);
-
-
for (int i= 0; i < 1000; i++) {
-
results.remove(i);
-
}
-
-
System.out.println(" ---- " + Thread.currentThread().getName() + " " + results.get(0));
-
-
return results.get(1);
-
}
-
-
-
public static void main(String[] args) throws InterruptedException, ExecutionException {
-
try {
-
for (int i = 0; i < 2000; i++) {
-
HashMapDeadLock hashMapDeadLock = new HashMapDeadLock();
-
// Future future = threadPool.submit(hashMapDeadLock);
-
// future.get();
-
threadPool.submit(hashMapDeadLock);
-
}
-
} catch (Exception e) {
-
e.printStackTrace();
-
} finally {
-
threadPool.shutdown();
-
}
-
}
-
}
1) 使用jps查看线程可得:
Java代码
-
43221 Jps
-
30056
-
43125 HashMapDeadLock
2)使用jstack导出多线程栈区信息:
Java代码
-
jstack -l 43125 > hash.jstack
3) hash.jstack的内容如下:
Java代码
-
2014-11-29 18:14:22
-
Full thread dump Java HotSpot(TM) 64-Bit Server VM (24.65-b04 mixed mode):
-
-
"Attach Listener" daemon prio=5 tid=0x00007f83ee08a000 nid=0x5d07 waiting on condition [0x0000000000000000]
-
java.lang.Thread.State: RUNNABLE
-
-
Locked ownable synchronizers:
-
- None
-
-
"DestroyJavaVM" prio=5 tid=0x00007f83eb016800 nid=0x1903 waiting on condition [0x0000000000000000]
-
java.lang.Thread.State: RUNNABLE
-
-
Locked ownable synchronizers:
-
- None
-
-
"pool-1-thread-10" prio=5 tid=0x00007f83ec80a000 nid=0x6903 runnable [0x000000011cd19000]
-
java.lang.Thread.State: RUNNABLE
-
at java.util.HashMap.transfer(HashMap.java:601)
-
at java.util.HashMap.resize(HashMap.java:581)
-
at java.util.HashMap.addEntry(HashMap.java:879)
-
at java.util.HashMap.put(HashMap.java:505)
-
at HashMapDeadLock.call(HashMapDeadLock.java:30)
-
at HashMapDeadLock.call(HashMapDeadLock.java:1)
-
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
-
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
-
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
-
at java.lang.Thread.run(Thread.java:745)
-
-
Locked ownable synchronizers:
-
- <0x00000007aaba84c8> (a java.util.concurrent.ThreadPoolExecutor$Worker)
-
-
"Service Thread" daemon prio=5 tid=0x00007f83eb839800 nid=0x5303 runnable [0x0000000000000000]
-
java.lang.Thread.State: RUNNABLE
-
-
Locked ownable synchronizers:
-
- None
-
-
"C2 CompilerThread1" daemon prio=5 tid=0x00007f83ee002000 nid=0x5103 waiting on condition [0x0000000000000000]
-
java.lang.Thread.State: RUNNABLE
-
-
Locked ownable synchronizers:
-
- None
-
-
"C2 CompilerThread0" daemon prio=5 tid=0x00007f83ee000000 nid=0x4f03 waiting on condition [0x0000000000000000]
-
java.lang.Thread.State: RUNNABLE
-
-
Locked ownable synchronizers:
-
- None
-
-
"Signal Dispatcher" daemon prio=5 tid=0x00007f83ec04c800 nid=0x4d03 runnable [0x0000000000000000]
-
java.lang.Thread.State: RUNNABLE
-
-
Locked ownable synchronizers:
-
- None
-
-
"Finalizer" daemon prio=5 tid=0x00007f83eb836800 nid=0x3903 in Object.wait() [0x000000011bc58000]
-
java.lang.Thread.State: WAITING (on object monitor)
-
at java.lang.Object.wait(Native Method)
-
- waiting on <0x00000007aaa85608> (a java.lang.ref.ReferenceQueue$Lock)
-
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:135)
-
- locked <0x00000007aaa85608> (a java.lang.ref.ReferenceQueue$Lock)
-
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:151)
-
at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:209)
-
-
Locked ownable synchronizers:
-
- None
-
-
"Reference Handler" daemon prio=5 tid=0x00007f83eb01a800 nid=0x3703 in Object.wait() [0x000000011bb55000]
-
java.lang.Thread.State: WAITING (on object monitor)
-
at java.lang.Object.wait(Native Method)
-
- waiting on <0x00000007aaa85190> (a java.lang.ref.Reference$Lock)
-
at java.lang.Object.wait(Object.java:503)
-
at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:133)
-
- locked <0x00000007aaa85190> (a java.lang.ref.Reference$Lock)
-
-
Locked ownable synchronizers:
-
- None
-
-
"VM Thread" prio=5 tid=0x00007f83ed808800 nid=0x3503 runnable
-
-
"GC task thread#0 (ParallelGC)" prio=5 tid=0x00007f83ec80d800 nid=0x2503 runnable
-
-
"GC task thread#1 (ParallelGC)" prio=5 tid=0x00007f83ec80e000 nid=0x2703 runnable
-
-
"GC task thread#2 (ParallelGC)" prio=5 tid=0x00007f83ec001000 nid=0x2903 runnable
-
-
"GC task thread#3 (ParallelGC)" prio=5 tid=0x00007f83ec002000 nid=0x2b03 runnable
-
-
"GC task thread#4 (ParallelGC)" prio=5 tid=0x00007f83ec002800 nid=0x2d03 runnable
-
-
"GC task thread#5 (ParallelGC)" prio=5 tid=0x00007f83ec003000 nid=0x2f03 runnable
-
-
"GC task thread#6 (ParallelGC)" prio=5 tid=0x00007f83ec003800 nid=0x3103 runnable
-
-
"GC task thread#7 (ParallelGC)" prio=5 tid=0x00007f83ec004800 nid=0x3303 runnable
-
-
"VM Periodic Task Thread" prio=5 tid=0x00007f83ec814800 nid=0x5503 waiting on condition
-
-
JNI global references: 134
4)从上边部分可看出,代码中的30行出问题了,即往hashmap中写入数据出问题了:
Java代码
-
results.put(i, i);
很快就明白因为Hashmap不是线程安全的,所以问题就出在这个地方,我们可以使用线程安全的map即
ConcurrentHashMap后者HashTable来解决该问题:
Java代码
-
import java.util.Map;
-
import java.util.concurrent.Callable;
-
import java.util.concurrent.ConcurrentHashMap;
-
import java.util.concurrent.ExecutionException;
-
import java.util.concurrent.ExecutorService;
-
import java.util.concurrent.Executors;
-
-
/**
-
*
-
*/
-
-
/**
-
* @author Josh Wang(Sheng)
-
*
-
* @email josh_wang23@hotmail.com
-
*/
-
public class HashMapDead2LiveLock implements Callable {
-
-
private static ExecutorService threadPool = Executors.newFixedThreadPool(10);
-
-
private static Map results = new ConcurrentHashMap<>();
-
-
@Override
-
public Integer call() throws Exception {
-
results.put(1, 1);
-
results.put(2, 2);
-
results.put(3, 3);
-
-
for (int i = 0; i < 1000; i++) {
-
results.put(i, i);
-
}
-
-
Thread.sleep(1000);
-
-
for (int i= 0; i < 1000; i++) {
-
results.remove(i);
-
}
-
-
System.out.println(" ---- " + Thread.currentThread().getName() + " " + results.get(0));
-
-
return results.get(1);
-
}
-
-
-
public static void main(String[] args) throws InterruptedException, ExecutionException {
-
try {
-
for (int i = 0; i < 2000; i++) {
-
HashMapDead2LiveLock hashMapDeadLock = new HashMapDead2LiveLock();
-
// Future future = threadPool.submit(hashMapDeadLock);
-
// future.get();
-
threadPool.submit(hashMapDeadLock);
-
}
-
} catch (Exception e) {
-
e.printStackTrace();
-
} finally {
-
threadPool.shutdown();
-
}
-
-
-
-
-
}
-
-
-
}
改成ConcurrentHashMap后,重新执行该程序,你会发现很快该程序就执行完了。