Chinaunix首页 | 论坛 | 博客
  • 博客访问: 4608191
  • 博文数量: 1214
  • 博客积分: 13195
  • 博客等级: 上将
  • 技术积分: 9105
  • 用 户 组: 普通用户
  • 注册时间: 2007-01-19 14:41
个人简介

C++,python,热爱算法和机器学习

文章分类

全部博文(1214)

文章存档

2021年(13)

2020年(49)

2019年(14)

2018年(27)

2017年(69)

2016年(100)

2015年(106)

2014年(240)

2013年(5)

2012年(193)

2011年(155)

2010年(93)

2009年(62)

2008年(51)

2007年(37)

分类: IT业界

2020-11-04 16:42:47

https://www.cnblogs.com/HuZihu/p/10142737.html

在之前的文章《机器学习---线性回归(Machine Learning Linear Regression)》中说到,使用最小二乘回归模型需要满足一些假设条件。但是这些假设条件却往往是人们容易忽略的地方。如果不考虑模型的适用情况,就只会得到错误的模型。下面来看一下,使用最小二乘回归模型需要满足哪些假设,以及如果不满足这些假设条件会产生怎样的后果。

 

最小二乘回归模型的5个基本假设:

  • 自变量(X)和因变量(y)线性相关
  • 自变量(X) ε)之间相互独立
  • 误差项( ε)之间相互独立

 

线性相关(linearly dependent)是最基本的假设。如果自变量和因变量之间没有关系或者是非线性关系,那么就无法使用线性回归模型进行预测,或者无法预测出准确的结果。

 

第二个假设:自变量(X) 共线性(collinearity) 多重共线性(multicollinearity)

 

第三个假设:ε)之间相互独立

随机误差项的各期望值之间存在着相关关系,称随机误差项之间存在自相关性(autocorrelation)。自相关性通常出现在时间序列里,后一项依赖于前一项;也可能出现在有偏差的样本里,比如样本搜集自同一个家庭的成员。当自相关性出现的时候,预测值的标准差往往比真实的小,进而会导致置信区间变窄,同时,较低的标准差会导致p值较小,这会让我们得到错误的假设检验结果。

 

第四个假设:误差项(ε)呈正态分布,期望为0,方差为定值

这里其实分为两个假设。第一个假设:误差项服从均值为0的正态分布。第二个假设:误差项的方差为定值(不变)。这两个假设是为了保证回归模型在小样本下能够顺利进行假设检验。正态分布假设仅在小样本的情况下需要,大样本的情况下则不需要,因为有中心极限定理做正态性的支撑。而方差齐性则保证最小二乘法估计出来的统计量具有最小的方差。如果违反了这个假设,置信区间会变宽,这称之为异方差性(heteroscedasticity)。当异方差性出现的时候,如果仍采用最小二乘法估计参数,会导致参数的t检验值被高估,可能造成本来不显著的某些参数变为显著,使假设检验失去意义。

 

第五个假设:ε)之间相互独立

模型中一个或多个自变量与随机误差项存在相关关系,这称之为内生性(endogeneity)。内生性通常由于遗漏变量而导致的,因此是一个普遍存在的问题。内生性会导致模型参数估计不准确。

阅读(840) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~