Chinaunix首页 | 论坛 | 博客
  • 博客访问: 4562064
  • 博文数量: 1214
  • 博客积分: 13195
  • 博客等级: 上将
  • 技术积分: 9105
  • 用 户 组: 普通用户
  • 注册时间: 2007-01-19 14:41
个人简介

C++,python,热爱算法和机器学习

文章分类

全部博文(1214)

文章存档

2021年(13)

2020年(49)

2019年(14)

2018年(27)

2017年(69)

2016年(100)

2015年(106)

2014年(240)

2013年(5)

2012年(193)

2011年(155)

2010年(93)

2009年(62)

2008年(51)

2007年(37)

分类: IT职场

2019-05-16 15:06:26

  在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。

  下面我们以线性回归算法来对三种梯度下降法进行比较。

  一般线性回归函数的假设函数为:

hθ=∑nj=0θjxjhθ=∑j=0nθjxj

  对应的能量函数(损失函数)形式为:

Jtrain(θ)=1/(2m)∑mi=1(hθ(x(i))?y(i))2Jtrain(θ)=1/(2m)∑i=1m(hθ(x(i))?y(i))2

  下图为一个二维参数(θ0θ0和θ1θ1)组对应能量函数的可视化图:

1. 批量梯度下降法BGD

   批量梯度下降法(Batch Gradient Descent,简称BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更新,其数学形式如下:

  (1) 对上述的能量函数求偏导:

  (2) 由于是最小化风险函数,所以按照每个参数θθ的梯度负方向来更新每个θθ

  具体的伪代码形式为:

  repeat{    

      

        (for every j=0, ... , n)

  }

  从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数据,如果样本数目mm很大,那么可想而知这种方法的迭代速度!所以,这就引入了另外一种方法,随机梯度下降。

  优点:全局最优解;易于并行实现;

  缺点:当样本数目很多时,训练过程会很慢。

  从迭代的次数上来看,BGD迭代的次数相对较少。其迭代的收敛曲线示意图可以表示如下:

2. 随机梯度下降法SGD

  由于批量梯度下降法在更新每一个参数时,都需要所有的训练样本,所以训练过程会随着样本数量的加大而变得异常的缓慢。随机梯度下降法(Stochastic Gradient Descent,简称SGD)正是为了解决批量梯度下降法这一弊端而提出的。

  将上面的能量函数写为如下形式:

  利用每个样本的损失函数对θθ求偏导得到对应的梯度,来更新θθ

  具体的伪代码形式为:

  1. Randomly shuffle dataset;

  2. repeat{

    for i=1, ... , mm{

      

       (for j=0, ... , nn)

    }

  }

  随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将theta迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。

  优点:训练速度快;

  缺点:准确度下降,并不是全局最优;不易于并行实现。

  从迭代的次数上来看,SGD迭代的次数较多,在解空间的搜索过程看起来很盲目。其迭代的收敛曲线示意图可以表示如下:

3. 小批量梯度下降法MBGD

  有上述的两种梯度下降法可以看出,其各自均有优缺点,那么能不能在两种方法的性能之间取得一个折衷呢?即,算法的训练过程比较快,而且也要保证最终参数训练的准确率,而这正是小批量梯度下降法(Mini-batch Gradient Descent,简称MBGD)的初衷。

  MBGD在每次更新参数时使用b个样本(b一般为10),其具体的伪代码形式为:

  Say b=10, m=1000.

  Repeat{

    for i=1, 11, 21, 31, ... , 991{

    

    (for every j=0, ... , nn)

    }

  }

4. 总结

  Batch gradient descent: Use all examples in each iteration;

  Stochastic gradient descent: Use 1 example in each iteration;

  Mini-batch gradient descent: Use b examples in each iteration.

作者:Poll的笔记 
博客出处:http://www.cnblogs.com/maybe2030/ 
本文版权归作者和博客园所有,欢迎转载,转载请标明出处。 
<如果你觉得本文还不错,对你的学习带来了些许帮助,请帮忙点击右下角的推荐>

阅读(3198) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~