C++,python,热爱算法和机器学习
全部博文(1214)
分类: NOSQL
2016-10-14 15:55:09
是一个强大的搜索服务器,基于Apache Lucene的全文搜索引擎开发,具有高性能、分布式和零配置的优点。在当前的项目中,我们希望ES能承担亿级文档的搜索,而ES也证明了即便面对这样的数据规模,也能实现十分迅速的搜索响应。
以ElasticSearch 1.5.0版本为例
ES的使用很简单,从官网下载压缩包后,解压后输入如下指令:
./bin/elasticsearch -d --cluster.name [your_cluster_name] --node.name [your_node_name]
一旦在多台主机上启动拥有同一个cluster.name的ES实例,它们会自动组成一个集群。
是一个必装的插件,它提供了一个web界面,显示集群和索引的状态,同时具备浏览和搜索文档的功能。只需要通过ES的plugin指令安装就OK了:
./bin/plugin -install mobz/elasticsearch-head
通常线上系统都不会使用ES作为主存储,从主存储创建索引的效率是我们关心的。ES的能支持批量操作,大大提升了创建索引的效率。以下是使用pyelasticsearch(非官方的一个Python客户端)批量创建索引的范例:
from pyelasticsearch import ElasticSearch from pyelasticsearch import bulk_chunks
es = ElasticSearch() def documents(): for _doc in docs: yield es.index_op(doc=_doc, id=doc['id']) for chunk in bulk_chunks(documents(), docs_per_chunk=500, bytes_per_chunk=10000):
es.bulk(chunk, index='index-test', doc_type='doc')
单机索引200万条记录的耗时约10分钟。
ES支持中文的前提是安装正确的分词组件,比如。但貌似该组件的最新版本(1.2.9)不支持plugin指令直接安装,只能通过Maven重新编译了:
git clone --depth 1 cd elasticsearch-analysis-ik/ # 真心希望你的网络棒棒嗒 mvn package
unzip ./target/releases/elasticsearch-analysis-ik-1.2.9.zip
zip解压得到5个jar包:
返回ES目录,新建路径./plugins/analysis-ik并把上述jar包全部移进去。
第二步,把elasticsearch-analysis-ik/config/ik文件夹(IK自带的词典)复制到ES目录的./config路径下。
第三步,在./config/elasticsearch.yml文件的最后加上:
index:
analysis:
analyzer:
ik:
alias: [news_analyzer_ik,ik_analyzer]
type: org.elasticsearch.index.analysis.IkAnalyzerProvider index.analysis.analyzer.default.type : "ik"
至此大功告成。注意配置分词组件必须在创建索引之前,否则是无效的。
ES的调优分两个层面,一是Java层面的调优,包括加大JVM的可用内存及单线程内存。
对Unix系统,可修改./bin/elasticsearch.in.sh文件:
# 一般分配主机1/4-1/2的内存 if [ "x$ES_MIN_MEM" = "x" ]; then ES_MIN_MEM=12g fi if [ "x$ES_MAX_MEM" = "x" ]; then ES_MAX_MEM=12g fi JAVA_OPTS="$JAVA_OPTS -Xms${ES_MIN_MEM}" JAVA_OPTS="$JAVA_OPTS -Xmx${ES_MAX_MEM}" # 线程大小, ES单线程承载的数据量比较大 JAVA_OPTS="$JAVA_OPTS -Xss128m"
调优的第二个层面是ES本身的调优,修改./config/elasticsearch.yml文件,关键的项目如下所示:
# 分片数量,推荐分片数*副本数=集群数量 # 分片会带来额外的分割和合并的损耗,理论上分片数越少,搜索的效率越高 index.number_of_shards: 20 # 锁定内存,不让JVM写入swapping,避免降低ES的性能 bootstrap.mlockall: true # 缓存类型设置为Soft Reference,只有当内存不够时才会进行回收 index.cache.field.max_size: 50000 index.cache.field.expire: 10m index.cache.field.type: soft