C++,python,热爱算法和机器学习
全部博文(1214)
分类: 大数据
2014-05-19 17:20:14
Cassandra的数据模型借鉴自Google的BigData模型,简单来说就是将写操作放在一个内存块中,当内存块大小达到一定大小时,将内存中的数据排序后写成一个sstable文件,而这种方式会有一些问题,而前段时间Google的Chromium团队开发的一个开源的key-value存储以其分层压缩机制给了大家一种新的思路,Cassandra也适时的将这种思路引入到Cassandra中,也就是今天我们要介绍的Cassandra的分层压缩。
在讲分层压缩之前,我们先来看一下Cassandra目前的数据存储模型和数据压缩机制。
像我们上面说的一样,Cassandra在内存数据达到一定大小时,会将数据排序写入磁盘生成一个sstable文件块,当第一级的sstable数目达到四个时,由于这四个sstable相当于是按时间划分的一段时间的数据快照,所以这四个块中会有一些相同的数据。我们将这四个sstable会进行合并压缩,就可憎减小空间。具体过程如下图所未:
上图绿色块就表示一个sstable,当第一级的sstable达到四个,就会合并成一个新的第二级的sstable。当然,当第二级的sstable也达到四个,就会再进行合并生成第三级的sstable,以此类推。如果下图所未,当一二三四级sstable都已经有三个,可能这个合并就会一直进行下去。
由于sstable之间可能有重复的数据,也就是同一个数据的不同版本可能存在在多个sstable中,所以上面的方式在更新比较频繁的系统中,可能会有下面一些问题:
新的压缩机制借鉴自LevelDB,这种机制最大的特点在于其同一层的各个sstable之间不会有重复的数据。所以在某一层和它上一层的数据块进行合并时,可以明确的知道某个key值处在哪个数据块中,可以一个数据块一个数据块的合并,合并后生成新块就丢掉老块。不用一直到所有合并完成后才能删除老的块。
另外,新的分层式压缩方式将数据分成条个层,最底层的叫L0,其上分别是L1,L2….,每一层的数据大小是其上的那一层数据最大大小的10倍,其中最底层L0的大小为5M
如下图所未,当浅绿色的L0块生成时,它会马上和L1层的数据进行合并,并生成新的L1块(蓝色块),当L1的块越来越多,大于这一层的最大大小时,这些块又会和L2层的数据进行合并并生新的L2层的块(紫色块)
可以这样理解,层级越小的块,其保存的数据越少,也越新,比如L0层保存的就是最新的数据版本,但是其只会保存5M数据,其上的L1层会保存50M数据,但是并不是最新的。当一个系统运行的时间足够长,那么其数据结构可能会如下图所未:
这种方式的优点是同一层的块之间没有重复数据,带来的好处就是在合并操作的时候,并不需要扫描一层中的所有数据块。合并的开销变小了。具体能够保证以下一些优点:
你可以通过在创建Column Family时指定compaction_strategy参数为LeveledCompactionStrategy来使用新的分层压缩策略。
当然,这种策略也不是万能的,对于一个更新操作和删除操作比较多的系统,使用分层压缩是比较合适的。因为这种系统会产生同一份数据的多个版本。但是由于这种压缩会在压缩中进行更多的IO操作,所以如果是一个主要是insert操作的系统,建议不要使用分层压缩方法。