文章来源:
http://blog.sina.com.cn/s/blog_a6c0d4220101c0ge.html
本文介绍如何进行个人新浪微博词频统计,并给出相应的柱状图分析,编程环境为Python 2.7。该文主要包括三个部分:新浪微博API的使用、文本过滤及分词和词频统计。
一、新浪微博API的使用
# -*- coding: UTF-8 -*-
from weibo import APIClient
from re import split
import urllib,httplib
import webbrowser
import operator
import numpy as np
import matplotlib.pyplot as plt
class iWInsightor(object):
def __init__(self,ID,PW):
self.ACCOUNT = ID
self.PASSWORD = PW
self.CALLBACK_URL = ''
self.APP_KEY = 'XXXXXXX'#Yours
self.APP_SECRET = 'XXXXXX'#Yours
self.client = APIClient(app_key=self.APP_KEY, app_secret=self.APP_SECRET, redirect_uri=self.CALLBACK_URL)
self.url = self.client.get_authorize_url()
self.get_Authorization()
def get_code(self):
conn = httplib.HTTPSConnection('api.weibo.com')
postdata = urllib.urlencode({'client_id':self.APP_KEY,'response_type':'code','redirect_uri':self.CALLBACK_URL,'action':'submit','userId':self.ACCOUNT,'passwd':self.PASSWORD,'isLoginSina':0,'from':'','regCallback':'','state':'','ticket':'','withOfficalFlag':0})
conn.request('POST','/oauth2/authorize',postdata,{'Referer':self.url,'Content-Type': 'application/x-www-form-urlencoded'})
res = conn.getresponse()
location = res.getheader('location')
code = location.split('=')[1]
conn.close()
return code
def get_Authorization(self):
code = self.get_code()
r = self.client.request_access_token(code)
access_token = r.access_token
expires_in = r.expires_in
self.client.set_access_token(access_token, expires_in)
#发送微博消息
def post_weibo(self,message):
self.client.post.statuses__update(status=message.decode('gbk'))
#获取当前用户ID
def getCurrentUid(self):
try:
uid = self.client.account.get_uid.get()['uid']
return uid
except Exception:
print 'get userid failed'
return
#获取用户关注列表
def getFocus(self,userid):
focuses = self.client.get.friendships__friends(uid=userid,count=200)
Resfocus = []
for focus in focuses["users"]:
try:
Resfocus.append((focus["screen_name"],focus["gender"]))
except Exception:
print 'get focus failed'
return
return Resfocus
#获取用户标签
def getTags(self,userid):
try:
tags = self.client.tags.get(uid=userid)
except Exception:
print 'get tags failed'
return
userTags = []
sortedT = sorted(tags,key=operator.attrgetter('weight'),reverse=True)
for tag in sortedT:
for item in tag:
if item != 'weight':
userTags.append(tag[item])
return userTags
#获取用户发布的微博
def getWeibo(self,uesrid,infile):
contents = self.client.get.statuses__user_timeline(uid=uesrid, count=100)
for content in contents.statuses:
try:
f = open(infile,'a')
f.write(content.text)
f.write('\n')
f.close()
except Exception:
print 'get text failed'
def autolabel(self,rects):
for rect in rects:
height = rect.get_height()
plt.text(rect.get_x()+rect.get_width()/2., 1.03*height, '%s' % float(height))
#画出用户的关注男女比例图
def getSexplot(self,userid,m,f,n):
res = self.client.get.users__show(uid=userid)
ind = np.arange(1,4)
width = 0.25
plt.subplot(111)
rects1 = plt.bar(left=ind, height=(m,f,n), width=0.25,align = 'center')
plt.ylabel('The Focus Number')
plt.title('Sex Analysis(effective samples:%d)' % (m+f+n))
plt.xticks(ind, ("Male","Female","Unknown") )
self.autolabel(rects1)
plt.legend((rects1,),("User:%s" % res["screen_name"],))
plt.show()
if __name__ == '__main__':
usrID = raw_input('请输入新浪微博用户名:')
usrPW = raw_input('请输入新浪微博密码:')
AppClient = iWInsightor(usrID, usrPW)
userid = AppClient.getCurrentUid()
infile = "E://data/weibo.dat"#微博内容保存路径及文件名
AppClient.getWeibo(userid,infile)
#Focus = AppClient.getFocus(userid)
#m = 0
#f = 0
#n = 0
#for i in Focus:
#if i[1] == "m":
#m = m+1
#elif i[1] == "f":
#f = f+1
#else:
#n = n+1
#AppClient.getSexplot(userid,m,f,n)
二、文本过滤及分词
微博中常常含有一些词汇,其对词频统计无任何作用,利用英文字母数字、汉语标点符号以及其他个性符号,这些我们需要在分词前将其滤除。此外,你还可以添加自己想滤除的符号或者字词。
中文与英文句子比较而言,有一个非常有趣的现象,那就是英文单词之间是有空格的,而中文则不然。因此,分词也成了中文信息处理中的一个基本步骤。我用的是结巴分词,可以添加自定义词典(因为分词字典很多词可能没涉及到),下载地址为。
# -*- coding: UTF-8-*-
import string
import jieba
extra_dict = 'F://NLP/iWInsightor/jieba/mydict.dict'#自定义词典
jieba.load_userdict(extra_dict)
def filter_str(instr):
deEstr = string.punctuation + ' ' + string.digits + string.letters
deCstr = ',。《》【】()!?★”“、:…'
destr = deEstr + deCstr
outstr = ''
for char in instr.decode('utf-8'):
if char not in destr:
outstr += char
return outstr
fp_in = open('F://NLP/iWInsightor/weibo.dat', 'rb+')#待处理文本
fp_out = open('F://NLP/iWInsightor/weibo_filter.dat', 'a')#处理后的文本
for line in fp_in:
str_delete = filter_str(line)
seg_list = jieba.cut(str_delete,cut_all=True)
str_join = ' '.join(seg_list)
fp_out.write(str_join)
fp_in.close()
fp_out.close()
三、词频统计
词频统计就是指统计出某个文本中各个词出现的次数,这里使用python中的词典数据结构易得。我用的是matplotlib画柱状图,画出top-K个高频词。这里需要注意的是图中的中文显示问题,在使用之前,需要修改相应的设置,具体方法不妨去google一下,我就不详细介绍了。
# -*- coding: UTF-8-*-
import string
import numpy
import pylab
def getstr(word, count):
countstr = word + ',' + str(count)
return countstr
def get_wordlist(infile):
c = open(infile).readlines()
wordlist = []
for line in c:
if len(line)>1:
words = line.split(' ')
for word in words:
if len(word)>1:
wordlist.append(word)
return wordlist
def get_wordcount(wordlist, outfile):
out = open(outfile, 'w')
wordcnt ={}
for i in wordlist:
if i in wordcnt:
wordcnt[i] += 1
else:
wordcnt[i] = 1
worddict = wordcnt.items()
worddict.sort(key=lambda a: -a[1])
for word,cnt in worddict:
out.write(getstr(word.encode('gbk'), cnt)+'\n')
out.close()
return wordcnt
def barGraph(wcDict):
wordlist=[]
for key,val in wcDict.items():
if val>5 and len(key)>3:
wordlist.append((key.decode('utf-8'),val))
wordlist.sort()
keylist=[key for key,val in wordlist]
vallist=[val for key,val in wordlist]
barwidth=0.5
xVal=numpy.arange(len(keylist))
pylab.xticks(xVal+barwidth/2.0,keylist,rotation=45)
pylab.bar(xVal,vallist,width=barwidth,color='y')
pylab.title(u'微博词频分析图')
pylab.show()
if __name__ == '__main__':
myfile = 'F://NLP/iWInsightor/weibo_filter.dat'
outfile = 'F://NLP/iWInsightor/result.dat'
wordlist = get_wordlist(myfile)
wordcnt = get_wordcount(wordlist,outfile)
barGraph(wordcnt)
至此,我们的工作就完成了。下面是我的微博词频的一个柱状图。这些仅是业余时间之作,尚有诸多不足之处。