Chinaunix首页 | 论坛 | 博客
  • 博客访问: 4562839
  • 博文数量: 1214
  • 博客积分: 13195
  • 博客等级: 上将
  • 技术积分: 9105
  • 用 户 组: 普通用户
  • 注册时间: 2007-01-19 14:41
个人简介

C++,python,热爱算法和机器学习

文章分类

全部博文(1214)

文章存档

2021年(13)

2020年(49)

2019年(14)

2018年(27)

2017年(69)

2016年(100)

2015年(106)

2014年(240)

2013年(5)

2012年(193)

2011年(155)

2010年(93)

2009年(62)

2008年(51)

2007年(37)

分类: Python/Ruby

2014-01-19 13:30:02

文章来源:http://blog.sina.com.cn/s/blog_a6c0d4220101c0ge.html
   本文介绍如何进行个人新浪微博词频统计,并给出相应的柱状图分析,编程环境为Python 2.7。该文主要包括三个部分:新浪微博API的使用、文本过滤及分词和词频统计。
    一、新浪微博API的使用
    首先在新浪微博开放平台http://open.weibo.com/development/上申请开发者账号,获取个人APP_KEY和APP_SECRET,下载并安装Python SDK。本文介绍的方法无需每次验证,直接运行即可。
# -*- coding: UTF-8 -*-
from weibo import APIClient
from re import split
import urllib,httplib
import webbrowser
import operator
import numpy as np
import matplotlib.pyplot as plt

class iWInsightor(object):
    def __init__(self,ID,PW):
        self.ACCOUNT = ID
        self.PASSWORD = PW
        self.CALLBACK_URL = ''
        self.APP_KEY = 'XXXXXXX'#Yours
        self.APP_SECRET = 'XXXXXX'#Yours
        self.client = APIClient(app_key=self.APP_KEY, app_secret=self.APP_SECRET, redirect_uri=self.CALLBACK_URL)
        self.url = self.client.get_authorize_url()
        self.get_Authorization()
    
    def get_code(self):  
        conn = httplib.HTTPSConnection('api.weibo.com')
        postdata = urllib.urlencode({'client_id':self.APP_KEY,'response_type':'code','redirect_uri':self.CALLBACK_URL,'action':'submit','userId':self.ACCOUNT,'passwd':self.PASSWORD,'isLoginSina':0,'from':'','regCallback':'','state':'','ticket':'','withOfficalFlag':0})
        conn.request('POST','/oauth2/authorize',postdata,{'Referer':self.url,'Content-Type': 'application/x-www-form-urlencoded'})
        res = conn.getresponse()
        location = res.getheader('location')
        code = location.split('=')[1]
        conn.close()
        return code
    
    def get_Authorization(self):
        code = self.get_code()
        r = self.client.request_access_token(code)
        access_token = r.access_token
        expires_in = r.expires_in
        self.client.set_access_token(access_token, expires_in)

    #发送微博消息   
    def post_weibo(self,message):
        self.client.post.statuses__update(status=message.decode('gbk'))
        
    #获取当前用户ID
    def getCurrentUid(self):
        try:
            uid = self.client.account.get_uid.get()['uid']
            return uid
        except Exception:
            print 'get userid failed'
            return

    #获取用户关注列表
    def getFocus(self,userid):
        focuses = self.client.get.friendships__friends(uid=userid,count=200)
        Resfocus = []
        for focus in focuses["users"]:
            try:
                Resfocus.append((focus["screen_name"],focus["gender"]))   
            except Exception:
                print 'get focus failed'
                return
        return Resfocus

    #获取用户标签
    def getTags(self,userid):
        try:
            tags = self.client.tags.get(uid=userid)
        except Exception:
            print 'get tags failed'
            return
        userTags = []
        sortedT = sorted(tags,key=operator.attrgetter('weight'),reverse=True)
        for tag in sortedT:
            for item in tag:
                if item != 'weight':
                   userTags.append(tag[item])
        return userTags

    #获取用户发布的微博
    def getWeibo(self,uesrid,infile):
        contents = self.client.get.statuses__user_timeline(uid=uesrid, count=100)
        for content in contents.statuses:
            try:
                f = open(infile,'a')
                f.write(content.text)
                f.write('\n')
                f.close()
            except Exception:
                print 'get text failed'

    def autolabel(self,rects):
        for rect in rects:
            height = rect.get_height()
            plt.text(rect.get_x()+rect.get_width()/2., 1.03*height, '%s' % float(height))
    
    #画出用户的关注男女比例图
    def getSexplot(self,userid,m,f,n):
        res = self.client.get.users__show(uid=userid)
        ind = np.arange(1,4) 
        width = 0.25      
        plt.subplot(111)
        rects1 = plt.bar(left=ind, height=(m,f,n), width=0.25,align = 'center')

        plt.ylabel('The Focus Number')
        plt.title('Sex Analysis(effective samples:%d)' % (m+f+n))
     
        plt.xticks(ind, ("Male","Female","Unknown") )
        self.autolabel(rects1)
        plt.legend((rects1,),("User:%s" % res["screen_name"],))
        plt.show()
        
if __name__ == '__main__':
    usrID = raw_input('请输入新浪微博用户名:')
    usrPW = raw_input('请输入新浪微博密码:')
    AppClient = iWInsightor(usrID, usrPW)
    
    userid = AppClient.getCurrentUid()
    infile = "E://data/weibo.dat"#微博内容保存路径及文件名
    AppClient.getWeibo(userid,infile)

    #Focus = AppClient.getFocus(userid)
    #m = 0
    #f = 0
    #n = 0
    #for i in Focus:
        #if i[1] == "m":
            #m = m+1
        #elif i[1] == "f":
            #f = f+1
        #else:
            #n = n+1
    #AppClient.getSexplot(userid,m,f,n)
    二、文本过滤及分词
    微博中常常含有一些词汇,其对词频统计无任何作用,利用英文字母数字、汉语标点符号以及其他个性符号,这些我们需要在分词前将其滤除。此外,你还可以添加自己想滤除的符号或者字词。
    中文与英文句子比较而言,有一个非常有趣的现象,那就是英文单词之间是有空格的,而中文则不然。因此,分词也成了中文信息处理中的一个基本步骤。我用的是结巴分词,可以添加自定义词典(因为分词字典很多词可能没涉及到),下载地址为。
# -*- coding: UTF-8-*-
import string
import jieba

extra_dict = 'F://NLP/iWInsightor/jieba/mydict.dict'#自定义词典
jieba.load_userdict(extra_dict)

def filter_str(instr):
  deEstr = string.punctuation + ' ' + string.digits + string.letters
  deCstr = ',。《》【】()!?★”“、:…'
  destr = deEstr + deCstr
  outstr = ''
  for char in instr.decode('utf-8'):
    if char not in destr:
      outstr += char
  return outstr

fp_in = open('F://NLP/iWInsightor/weibo.dat', 'rb+')#待处理文本
fp_out = open('F://NLP/iWInsightor/weibo_filter.dat', 'a')#处理后的文本

for line in fp_in:
  str_delete = filter_str(line)
  seg_list = jieba.cut(str_delete,cut_all=True)
  str_join = ' '.join(seg_list)
  fp_out.write(str_join)

fp_in.close()
fp_out.close()
    三、词频统计
    词频统计就是指统计出某个文本中各个词出现的次数,这里使用python中的词典数据结构易得。我用的是matplotlib画柱状图,画出top-K个高频词。这里需要注意的是图中的中文显示问题,在使用之前,需要修改相应的设置,具体方法不妨去google一下,我就不详细介绍了。
    # -*- coding: UTF-8-*-
import string
import numpy
import pylab

def getstr(word, count):
    countstr = word + ',' + str(count)
    return countstr

def get_wordlist(infile):
    c = open(infile).readlines()
    wordlist = []
    for line in c:
        if len(line)>1:
            words = line.split(' ')
            for word in words:
                if len(word)>1:
                    wordlist.append(word)
    return wordlist
    
def get_wordcount(wordlist, outfile):
    out = open(outfile, 'w')
    wordcnt ={}
    for i in wordlist:
        if i in wordcnt:
            wordcnt[i] += 1
        else:
            wordcnt[i] = 1
    worddict = wordcnt.items()
    worddict.sort(key=lambda a: -a[1])
    for word,cnt in worddict:
        out.write(getstr(word.encode('gbk'), cnt)+'\n')
    out.close()
    return wordcnt

def barGraph(wcDict):
    wordlist=[]
    for key,val in wcDict.items():
        if val>5 and len(key)>3:
            wordlist.append((key.decode('utf-8'),val))
    wordlist.sort()
    keylist=[key for key,val in wordlist]
    vallist=[val for key,val in wordlist]
    barwidth=0.5
    xVal=numpy.arange(len(keylist))
    pylab.xticks(xVal+barwidth/2.0,keylist,rotation=45)
    pylab.bar(xVal,vallist,width=barwidth,color='y')
    pylab.title(u'微博词频分析图')
    pylab.show()
     
if __name__ == '__main__':
    myfile = 'F://NLP/iWInsightor/weibo_filter.dat'
    outfile = 'F://NLP/iWInsightor/result.dat'
    wordlist = get_wordlist(myfile)
    wordcnt = get_wordcount(wordlist,outfile)
    barGraph(wordcnt)
    
    至此,我们的工作就完成了。下面是我的微博词频的一个柱状图。这些仅是业余时间之作,尚有诸多不足之处。
    【Python】统计个人新浪微博词频并给出相应的柱状图
阅读(2976) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~