C++,python,热爱算法和机器学习
全部博文(1214)
分类: Python/Ruby
2012-04-25 18:13:15
GIL 是什么东西?它对我们的 python 程序会产生什么样的影响?我们先来看一个问题,
运行下面这段 python 程序,CPU 占用率会到多少:
# 请勿在工作中模仿,危险:) def dead_loop(): while True: pass dead_loop() |
答案是什么呢,占用 100% CPU?那是单核!还得是没有超线程的古董 CPU。在我的双核 CPU 上,这个死循环只会吃掉我一个核的工作负荷,也就是只占用 50% CPU。那如何能让它在双核机器上占用 100% 的 CPU 呢?答案很容易想到,用两个线程就行了,线程不正是并发分享 CPU 运算资源的吗。可惜,答案虽然对了,但做起来可没那么简单。下面的程序在主线程之外又起了一个死循环的线程
import threading def dead_loop(): while True: pass # 新起一个死循环线程 t = threading.Thread(target=dead_loop) t.start() # 主线程也进入死循环 dead_loop() t.join() |
按道理它应该能做到占用两个核的 CPU 资源,可是实际运行情况却是没有什么改变,还是只占了 50% CPU 不到。这又是为什么呢?难道 python 里的线程不是操作系统的原生线程?打开 system monitor 一探究竟,这个占了 50% 的 python 进程确实是有两个线程在跑。那这两个死循环的线程为何不能占满双核 CPU 资源呢?其实幕后的黑手就是 GIL。
GIL 的全程为 ,意即 全局解释器锁 在 Python 语言的主流 CPython 实现中,GIL 是一个货真价实的全局线程锁,在解释器解释执行任何 Python 代码时,都需要先获得这把锁才行,解释器在遗到 I/O 操作时会释放这把锁。如果是计算的程序,没有I/O操作,解释器会每隔100次操作就释放这把锁,让别的线程有机会执行(这个次数可以通过 sys.setcheckinterval来调整)。所以,虽然 CPython 的线程库直接封装操作系统的原生线程,但 CPython 进程做为一个整体,同一时间只会有一个获得了 GIL 的线程在跑,其它的线程都处于等待状态等着 GIL 的释放。这也就解释了我们上面的实验结果:虽然有两个死循环的线程,而且有两个物理 CPU 内核,但因为 GIL 的限制,两个线程只是做着分时切换,总的 CPU 占用率还略低于 50%。
看起来 python 很不给力啊。GIL 直接导致 CPython 不能利用物理多核的性能加速运算。那为什么会有这样的设计呢?我想,应该还是历史遗留问题。多核 CPU 在 1990 年代还属于类科幻,Guido van Rossum 在创造 python 的时候,也想不到他的语言有一天会被用到很可能 1000+ 个核的 CPU 上面,一个全局锁搞定多线程安全在那个时代应该是最简单经济的设计了。简单而又能满足需求,那就是合适的设计(对设计来说,应该只有合适与否,而没有好与 不好)。怪只怪硬件的发展实在太快了,摩尔定律给软件业的红利这么快就要到头了。短短20年不到,代码工人就不能指望仅仅靠升级 CPU 就能让老软件跑的更快了。在多核时代,编程的免费午餐没有了。如果程序不能用并发挤干每个核的运算性能,那就意谓着会被淘汰。对软件如此,对语言也是一 样。那 Python 对此的策略呢?
Python 的应对很简单,以不变应万变。在最新的 python 3 中依然有 GIL。之所以不去掉,原因嘛,不外以下几点:
那除了切掉 GIL 外,果然还有方法让 Python 在多核时代活的滋润?让我们回到本文最初的那个问题:如何能让这个死循环的 Python 脚本在双核机器上占用 100% 的 CPU?其实最简单的答案应该是:运行两个 python 死循环的程序,也就是说,用两个分别占满一个 CPU 内核的 python 进程来做到。确实,多进程也是利用多个 CPU 的好方法。只是进程间内存地址空间独立,互相协同通信要比多线程麻烦很多。有感于此,Python 在 2.6 里新引入了 multiprocessing 这个多进程标准库,让多进程的 python 程序编写简化到类似多线程的程度,大大减轻了 GIL 带来的不能利用多核的尴尬。
这还只是一个方法,如果不想用多进程这样“重量级”的解决方案,还有个更彻底的方案,放弃 Python,改用 C/C++。当然,你也不用做的这么绝,只需要把关键部分用 C/C++ 写成 Python 扩展,其它部分还是用 Python 来写,让 Python 的归 Python,C 的归 C。一般计算密集性的程序都会用 C 代码编写并通过扩展的方式集成到 Python 脚本里(如 NumPy 模块)。在扩展里就完全可以用 C 创建原生线程,而且不用锁 GIL,充分利用 CPU 的计算资源了。不过,写 Python 扩展总是让人觉得很复杂。好在 Python 还有另一种与 C 模块进行互通的机制 : ctypes
ctypes 与 python 扩展不同,它可以让 Python 直接调用任意的 C 动态库的导出函数。你所要做的只是用 ctypes 这个 Python 库写些 python 代码即可。最酷的是,ctypes 会在调用 C 的函数前释放 GIL。所以,我们可以通过 ctypes 和 C 动态库来让 python 充分利用物理内核的计算能力。让我们来实际验证一下,我们用 C 写一个死循环函数
extern"C" { void DeadLoop() { while (true); } } |
用上面的 C 代码编译生成动态库 libdead_loop.so
,接着就要利用 ctypes 来在 python 里 load 这个动态库,分别在主线程和新建线程里调用其中的 DeadLoop
from ctypes import * from threading import Thread lib = cdll.LoadLibrary("libdead_loop.so") t = Thread(target=lib.DeadLoop) t.start() lib.DeadLoop() |
这回再看看 system monitor,Python 解释器进程有两个线程在跑,而且双核 CPU 全被占满了!ctypes 确实很给力。需要提醒的是,GIL 是被 ctypes 在调用 C 的函数前释放了。但是 Python 解释器还是会在执行任意一段 Python 代码时锁 GIL 的。如果你使用 Python 的代码做为 C 函数的 callback,那么只要 Python 的 callback 方法被执行时,GIL 还是会跳出来的。比如下面的例子:
extern"C" { typedef void Callback(); void Call(Callback* callback) { callback(); } } |
from ctypes import * from threading import Thread def dead_loop(): while True: pass lib = cdll.LoadLibrary("libcall.so") Callback = CFUNCTYPE(None) callback = Callback(dead_loop) t = Thread(target=lib.Call, args=(callback,)) t.start() lib.Call(callback) |
注意这里与上个例子的不同之处,这次的死循环是发生在 Python 代码里 (DeadLoop 函数) 而 C 代码只是负责去调用这个 callback 而已。运行这个例子,你会发现 CPU 占用率还是只有 50% 不到。GIL 又起作用了。
其实,从上面的例子,我们还能看出 ctypes 的一个应用,那就是用 python 写测试 case,通过 ctypes 直接调用 C 模块的接口来对这个模块进行黑盒测试,哪怕是有关该模块 C 接口的多线程安全方面的测试,ctypes 也一样能做到。
虽然 CPython 的线程库封装了操作系统的原生线程,但却因为 GIL 的存在导致多线程不能利用多个 CPU 内核的计算能力。好在,现在 Python 有了易经筋(multiprocessing), 吸星大 法(C 语言扩展机制)和独孤九剑(ctypes),足以应付多核时代的挑战,GIL 切还是不切,已经不重要了,不是吗。
Windows 上 multiprocessing.Process 的使用有些要特别注意的事项. 这段程序违反了其中一条:
请保证 Python 解释器能安全的装载主模块, 从而不会引起无意的副作用(比如说开启一个新的进程).
换句话说, 你应该用 if __name__ == '__main__': 把启动新进程那段代码保护起来, 这样 import 自己的时候就不会无意间执行启动进程的代码了:
from multiprocessing import Process
def dead_loop():
while True:
passif __name__ == '__main__':
p1 = Process(target=dead_loop)
p1.start()
p1.join()
这样启动新进程时, 就不会无限递归的再启动新的进程了
详见:
文章信息
laoliulaoliu2012-05-08 22:56:55