Chinaunix首页 | 论坛 | 博客
  • 博客访问: 4608066
  • 博文数量: 1214
  • 博客积分: 13195
  • 博客等级: 上将
  • 技术积分: 9105
  • 用 户 组: 普通用户
  • 注册时间: 2007-01-19 14:41
个人简介

C++,python,热爱算法和机器学习

文章分类

全部博文(1214)

文章存档

2021年(13)

2020年(49)

2019年(14)

2018年(27)

2017年(69)

2016年(100)

2015年(106)

2014年(240)

2013年(5)

2012年(193)

2011年(155)

2010年(93)

2009年(62)

2008年(51)

2007年(37)

分类:

2012-01-28 01:17:08

文章来源:

做相似度计算的时候经常会用到皮尔逊相关系数(Pearson Correlation Coefficient),那么应该如何理解该系数?其数学本质、含义是什么?

相关公式:

皮尔逊相关系数计算公式1

皮尔逊相关系数计算公式2

皮尔逊相关系数计算公式3

相关链接:

皮尔逊相关系数理解有两个角度

其一, 按照高中数学水平来理解, 它很简单, 可以看做将两组数据首先做Z分数处理之后, 然后两组数据的乘积和除以样本数

Z分数一般代表正态分布中, 数据偏离中心点的距离.等于变量减掉平均数再除以标准差.(就是高考的标准分类似的处理)

标准差则等于变量减掉平均数的平方和,再除以样本数,最后再开方.

所以, 根据这个最朴素的理解,我们可以将公式依次精简为:

相关系数

其二, 按照大学的线性数学水平来理解, 它比较复杂一点,可以看做是两组数据的向量夹角的余弦.

皮尔逊相关的约束条件

从以上解释, 也可以理解皮尔逊相关的约束条件:

  • 1 两个变量间有线性关系
  • 2 变量是连续变量
  • 3 变量均符合正态分布,且二元分布也符合正态分布
  • 4 两变量独立

在实践统计中,一般只输出两个系数,一个是相关系数,也就是计算出来的相关系数大小,在-1到1之间;另一个是独立样本检验系数,用来检验样本一致性.

先举个手算的例子

使用维基中的例子:

例如,假设五个国家的国民生产总值分别是1、2、3、5、8(单位10亿美元),又假设这五个国家的贫困比例分别是11%、12%、13%、15%、18%。

创建2个向量.(R语言)

x<-c(1,2,3,5,8)y<-c(0.11,0.12,0.13,0.15,0.18)

按照维基的例子,应计算出相关系数为1出来.我们看看如何一步一步计算出来的.

x的平均数是:3.8
y的平均数是0.138
所以,

sum((x-mean(x))*(y-mean(y)))=0.308

用大白话来写就是:

(1-3.8)*(0.11-0.138)=0.0784
(2-3.8)*(0.12-0.138)=0.0324
(3-3.8)*(0.13-0.138)=0.0064
(5-3.8)*(0.15-0.138)=0.0144
(8-3.8)*(0.18-0.138)=0.1764

0.0784+0.0324+0.0064+0.0144+0.1764=0.308

同理, 分号下面的,分别是:

sum((x-mean(x))^2)=30.8
sum((y-mean(y))^2)= 0.00308

用大白话来写,分别是:

(1-3.8)^2=7.84 #平方
(2-3.8)^2=3.24 #平方
(3-3.8)^2=0.64 #平方
(5-3.8)^2=1.44 #平方
(8-3.8)^2=17.64 #平方

7.84+3.24+0.64+1.44+17.64=30.8

同理,求得:

sum((y-mean(y))^2)= 0.00308

然后再开平方根,分别是:

30.8^0.5=5.549775
0.00308^0.5=0.05549775

用分子除以分母,就计算出最终结果:

0.308/(5.549775*0.05549775)=1

  • 再举个简单的R语言例子(R在这里下载: )
假设有100人, 一组数据是年龄,平均年龄是35岁,标准差是5岁;另一组数据是发帖数量,平均帖子数量是45份post,标准差是8份帖子.

假设这两组都是正态分布.我们来求这两者的皮尔逊相关系数,R脚本如下:

> x<-rnorm(n=100,mean=35,sd=5)  #创建一组平均数为35,标准差为5,样本数为100的随机数
> y<-rnorm(n=100,mean=45,sd=8) #创建一组平均数为45,标准差为8,样本数为100的随机数
>  cor.test(x,y,method="pearson") #计算这两组数的相关,并进行T检验

然后R输出结果为:

Pearson's product-moment correlation

data:  x and y
t = -0.0269, df = 98, p-value = 0.9786
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.1990316  0.1938019
sample estimates:
         cor
-0.002719791

当然,这里是随机数.也可以用非随机的验证一下计算.

皮尔逊相关系数用于网站开发

直接将R与Ruby关联起来

调用很简单,仿照上述例子:

cor(x,y)

就输出系数结果了.

有这么几个库可以参考:

说明, 以上为ruby调用库. pythone程序员可以参考: Rpy ()

简单的相关系数的分类
  • 0.8-1.0 极强相关
  • 0.6-0.8 强相关
  • 0.4-0.6 中等程度相关
  • 0.2-0.4 弱相关
  • 0.0-0.2 极弱相关或无相关

ps : 这个网站开发者不要再次发明轮子,本来用markdown语法写作很爽,结果又不得不花时间来改动.请考虑尽快支持Markdown语法.


阅读(3883) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~