Chinaunix首页 | 论坛 | 博客
  • 博客访问: 223256
  • 博文数量: 68
  • 博客积分: 3120
  • 博客等级: 中校
  • 技术积分: 715
  • 用 户 组: 普通用户
  • 注册时间: 2008-03-08 09:53
文章分类
文章存档

2012年(29)

2011年(3)

2010年(18)

2009年(18)

我的朋友

分类: C/C++

2012-01-26 11:35:34

问题:

A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.

A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n.

As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit.

Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.


答案:4179871
#include

int sumDiv(int n)
{
    int i = 2;
    int sum = 1;

    if (n == 1 || n == 2 || n == 3)
        return 1;
    else
    {
        for (i = 2; i <= n/2; i++)
            if (n % i == 0)
                sum += i;
        return sum;
    }
}

int main(void)
{
    const int up = 28123;
    int i = 0, sum = 0;
    int F[28124] = {0};

    for (i=1; i<=up; i++)
        if (sumDiv(i) > i)
            F[i] = 1;

    int j = 0, f = 0;
    for (i=1; i<=up; i++)
    {
        for (j = 1; j<=i/2; j++){
            if (F[j]==1 && F[i-j]==1){
                f = 1;
                 break;
            }
        }
        if (f == 0)
        sum += i;
        f = 0;
    }

    printf("%d\n", sum);
    return 0;
}

阅读(871) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~