将正整数n表示成一系列正整数之和,n=n1+n2+...+nk,其中n1>=n2>=...>=nk,k>=1.
将最大加数n1不大于m的划分个数记做:q(n, m).
1.q(n, 1) = 1, n>=1.
2.q(n, m) = q(n, n),m>=n.
3.q(n, n) = 1+q(n, n-1).
4.q(n, m) = q(n, m-1)+q(n-m, m),n>m>1,即:正整数的最大加数n1不大于m的划分有n1=m的划分和n1<=m-1的划分组成。
#include <stdio.h>
static int division(int n, int m);
int main(int argc, char **argv)
{
int n;
int num;
scanf("%d", &n);
getchar();
num = division(n, n);
printf("num = %d\n", num);
return 0;
}
static int division(int n, int m)
{
if((n < 1) || m < 1){
return 0;
}
if((n == 1) || m == 1){
return 1;
}
if(n < m){
return division(n, n);
}
if(n == m){
return (1 + division(n, n-1));
}
return (division(n, m-1) + division(n-m, m));
}
[xxxx@localhost graph]$ ./a.out 6 num = 11
|
阅读(957) | 评论(0) | 转发(0) |