Chinaunix首页 | 论坛 | 博客
  • 博客访问: 242343
  • 博文数量: 46
  • 博客积分: 847
  • 博客等级: 准尉
  • 技术积分: 435
  • 用 户 组: 普通用户
  • 注册时间: 2011-06-17 18:05
个人简介

Linux运维经验

文章分类

全部博文(46)

文章存档

2021年(2)

2014年(2)

2013年(5)

2012年(19)

2011年(18)

我的朋友

分类: LINUX

2012-08-21 12:49:20

Linux System and Performance Monitoring(Memory篇)
Date:       2009.07.21
Author: Darren Hoch
译:            Tonnyom[AT]hotmail.com

本文接上一篇:

Linux System and Performance Monitoring(CPU篇)

5.0 Virtual Memory介绍

虚拟内存就是采用硬盘对物理内存进行扩展,所以对可用内存的增加是要相对在一个有效范围内的.内核会写当前未使用内存块的内容到硬盘上,此时这部分内存被用于其它用途.当再一次需要原始内容时,此时再读回到内存中.这对于用户来说,是完全透明的;在Linux 下运行的程序能够看到,也仅仅是大量的可用内存,同时也不会留意到,偶尔还有部分是驻留在磁盘上的.当然,在硬盘上进行读和写,都是很慢的(大约会慢上千倍),相对于使用真实内存的话,因此程序无法运行的更快.用硬盘的一部分作为Virtual Memory,这就被称为”swap space”(译注:交换空间).

5.1 Virtual Memory Pages

虚拟内存被分为很多 pages(译注:页),在X86架构中,每个虚拟内存页为 4KB.当内核写内存到磁盘或者读磁盘到内存,这就是一次写内存到页的过程.内核通常是在swap 分区和文件系统之间进行这样的操作.

5.2 Kernel Memory Paging

内存分页在正常情况下总是活跃的,与memory swapping(译注:内存交换)之间不要搞错了.内存分页是指内核会定期将内存中的数据同步到硬盘,这个过程就是Memory Paging.日复一日,应用最终将会消耗掉所有的内存空间.考虑到这点,内核就必须经常扫描内存空间并且收回其中未被使用的内存页,然后再重新分配内存空间给其他应用使用.

5.3 The Page Frame Reclaim Algorithm(PFRA)(译注:页框回收算法)

PFRA 就是OS 内核用来回收并释放内存空间的算法.PFRA 选择哪个内存页被释放是基于内存页类型的.页类型有以下几种:

Unreclaimable –锁定的,内核保留的页面
Swappable –匿名的内存页
Syncable –通过硬盘文件备份的内存页
Discardable –静态页和被丢弃的页

除了第一种(Unreclaimable)之外其余的都可以被PFRA进行回收.

与PFRA 相关的,还包括kswapd 内核线程以及Low On Memory Reclaiming(LMR算法) 这2种进程和实现.

5.4 kswapd

kswapd 进程负责确保内存空间总是在被释放中.它监控内核中的pages_high和pages_low阀值.如果空闲内存的数值低于 pages_low,则每次 kswapd 进程启动扫描并尝试释放32个free pages.并一直重复这个过程,直到空闲内存的数值高于 pages_high.

kswapd 进程完成以下几个操作:

1,如果该页处于未修改状态,则将该页放置回空闲列表中.
2,如果该页处于已修改状态并可备份回文件系统,则将页内容写入到磁盘.
3,如果该页处于已修改状态但没有任何磁盘备份,则将页内容写入到swap device.

# ps -ef | grep kswapd
root 30 1 0 23:01 ? 00:00:00 [kswapd0]

5.5 Kernel Paging with pdflush

pdflush 进程负责将内存中的内容和文件系统进行同步操作.也就是说,当一个文件在内存中进行修改后, pdflush 将负责写回到磁盘上.

# ps -ef | grep pdflush
root 28 3 0 23:01 ? 00:00:00 [pdflush]
root 29 3 0 23:01 ? 00:00:00 [pdflush]

当内存中存在10% 的脏页,pdflush 将被启动同步脏页回文件系统里.这个参数值可以通过 vm.dirty_background_ratio 来进行调整.

(译注:
Q:什么是脏页?
A:由于内存中页缓存的缓存作用,写操作实际上都是延迟的.当页缓存中的数据比磁盘存储的数据还要更新时,那么该数据就被称做脏页.)

# sysctl -n vm.dirty_background_ratio
10

在多数环境下,Pdflush与PFRA是独立运行的,当内核调用LMR时,LMR 就触发pdflush将脏页写入到磁盘里.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
在2.4 内核下,一个高负荷的内存环境中,系统将遇到交换过程中不断的崩溃.这是因为PFRA 从一个运行进程中,偷取其中一个内存页并尝试使用.导致结果就是,这个进程如果要回收那个页时,要是没有就会尝试再去偷取这个页,这样一来,就越来越糟糕了.在2.6 内核下,使用”Swap token”修复了这个BUG,用来防止PFRA 不断从一个进程获取同一个页.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

5.6 案例学习:大量的入口I/O

vmstat 工具报告里除了CPU 使用情况,还包括了虚拟内存.以下就是vmstat 输出中关于虚拟内存的部分:

Table 2: The vmstat Memory Statistics
Field Description
Swapd The amount of virtual memory in KB currently in use. As free memory reaches low thresholds, more data is paged to the swap device.
当前虚拟内存使用的总额(单位:KB).空闲内存达到最低的阀值时,更多的数据被转换成页到交换设备中.
Free The amount of physical RAM in kilobytes currently available to running applications.
当前内存中可用空间字节数.
Buff The amount of physical memory in kilobytes in the buffer cache as a result of read() and write() operations.
当前内存中用于read()和write()操作的缓冲区中缓存字节数
Cache The amount of physical memory in kilobytes mapped into process address space.
当前内存中映射到进程地址空间字节数
So The amount of data in kilobytes written to the swap disk.
写入交换空间的字节数总额
Si The amount of data in kilobytes written from the swap disk back into RAM.
从交换空间写回内存的字节数总额
Bo The amount of disk blocks paged out from the RAM to the filesystem or swap device.
磁盘块页面从内存到文件或交换设备的总额
Bi The amount of disk blocks paged into RAM from the filesystem or swap device.
磁盘块页面从文件或交换设备到内存的总额

以下 vmstat 的输出结果,就是演示一个在I/O 应用中,虚拟内存在高负荷情况下的环境

# vmstat 3
procs                               memory                swap       io          system cpu
r  b  swpd       free       buff      cache       si     so  bi      bo   in    cs  us  sy id wa
3 2 809192 261556 79760 886880 416 0 8244 751 426 863 17 3 6 75
0 3 809188 194916 79820 952900 307 0 21745 1005 1189 2590 34 6 12 48
0 3 809188 162212 79840 988920 95 0 12107 0 1801 2633 2 2 3 94
1 3 809268 88756 79924 1061424 260 28 18377 113 1142 1694 3 5 3 88
1 2 826284 17608 71240 1144180 100 6140 25839 16380 1528 1179 19 9 12 61
2 1 854780 17688 34140 1208980 1 9535 25557 30967 1764 2238 43 13 16 28
0 8 867528 17588 32332 1226392 31 4384 16524 27808 1490 1634 41 10 7 43
4 2 877372 17596 32372 1227532 213 3281 10912 3337 678 932 33 7 3 57
1 2 885980 17800 32408 1239160 204 2892 12347 12681 1033 982 40 12 2 46
5 2 900472 17980 32440 1253884 24 4851 17521 4856 934 1730 48 12 13 26
1 1 904404 17620 32492 1258928 15 1316 7647 15804 919 978 49 9 17 25
4 1 911192 17944 32540 1266724 37 2263 12907 3547 834 1421 47 14 20 20
1 1 919292 17876 31824 1275832 1 2745 16327 2747 617 1421 52 11 23 14
5 0 925216 17812 25008 1289320 12 1975 12760 3181 772 1254 50 10 21 19
0 5 932860 17736 21760 1300280 8 2556 15469 3873 825 1258 49 13 24 15

根据观察值,我们可以得到以下结论:

1,大量的disk pages(bi)被写入内存,很明显在进程地址空间里,数据缓存(cache)也在不断的增长.

2,在这个时间点上,空闲内存(free) 始终保持在17MB,即使数据从硬盘读入而在消耗RAM.

3,为了维护空闲列表, kswapd 从读/写缓存区(buff)中获取内存并分配到空闲列表里.很明显可以看到buffer cache(buff) 在逐渐的减少中.

4, 同时kswapd 进程不断的写脏页到swap device(so)时,很明显虚拟内存的利用率是在逐渐的增加中(swpd).

5.7 结论

监控虚拟内存性能由以下几个部分组成:

1,当系统中出现较少的页错误,获得最好的响应时间,是因为memory caches(译注:内存高速缓存)比disk caches更快(译注:磁盘高速缓存).

2,较少的空闲内存,是件好事情,那意味着缓存的使用更有效率.除非在不断的写入swap device和disk.

3,如果系统不断报告,swap device总是繁忙中,那就意味着内存已经不足,需要升级了.

上一篇:

Linux System and Performance Monitoring(CPU篇)

下一篇:

Linux System and Performance Monitoring(I/O篇)

转自:

阅读(993) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~