Chinaunix首页 | 论坛 | 博客
  • 博客访问: 2093344
  • 博文数量: 413
  • 博客积分: 10926
  • 博客等级: 上将
  • 技术积分: 3862
  • 用 户 组: 普通用户
  • 注册时间: 2006-01-09 18:14
文章分类

全部博文(413)

文章存档

2015年(5)

2014年(1)

2013年(5)

2012年(6)

2011年(138)

2010年(85)

2009年(42)

2008年(46)

2007年(26)

2006年(59)

分类: Java

2011-06-10 17:43:35

From:

补充:
MappedByteBuffer is a special kind of direct byte buffer which maps a region of file to memory. It can be created by calling FileChannel.map.

1.   基本 概念

IO 是主存和外部设备 ( 硬盘、终端和网络等 ) 拷贝数据的过程。 IO 是操作系统的底层功能实现,底层通过 I/O 指令进行完成。

所有语言运行时系统提供执行 I/O 较高级别的工具。 (c printf scanf,java 的面向对象封装 )

2.    Java 标准 io 回顾

Java 标准 IO 类库是 io 面向对象的一种抽象。基于本地方法的底层实现,我们无须关注底层实现。 InputStream\OutputStream( 字节流 ) :一次传送一个字节。 Reader\Writer( 字符流 ) :一次一个字符。

3.    nio 简介

nio java New IO 的简称,在 jdk1.4 里提供的新 api Sun 官方标榜的特性如下:

    为所有的原始类型提供缓存支持:  Buffer, defiend in package java.nio

    字符集编码解码解决方案: java.nio.charset: Charset, CharsetDecoder, CharsetEncoder

    Channel - 一个新的原始 I/O 抽象: (java.nio.channels)

    支持锁和内存映射文件的文件访问接口: FileChannel + MappedByteBuffer

    提供多路非阻塞式的高伸缩性网络 I/O: SelectableChannel (SocketChannel, ServerSocketChannel, DatagramChannel, Pipe-Pipe.SinkChannel/Pipe.SourceChannel) + Selector + SelectionKey (just like function select/poll/epoll of libc)

-      管道:Pipe (Like function pipe() of libc)

本文将围绕这几个特性进行学习和介绍。

4.   Buffer&Chanel

Channel buffer NIO 是两个最基本的数据类型抽象。

Buffer:

       是一块连续的内存块。

       NIO 数据读或写的中转地。

Channel:

       数据的源头或者数据的目的地

       用于向 buffer 提供数据或者读取 buffer 数据 ,buffer 对象的唯一接口。

        异步 I/O 支持


图1:channel和buffer关系
 

 

例子 1:CopyFile.java:

Java代码  收藏代码
  1. package sample;  
  2.   
  3. import java.io.FileInputStream;  
  4. import java.io.FileOutputStream;  
  5. import java.nio.ByteBuffer;  
  6. import java.nio.channels.FileChannel;  
  7.   
  8. public class CopyFile {  
  9.     public static void main(String[] args) throws Exception {  
  10.         String infile = "C:\\copy.sql";  
  11.         String outfile = "C:\\copy.txt";  
  12.         // 获取源文件和目标文件的输入输出流  
  13.         FileInputStream fin = new FileInputStream(infile);  
  14.         FileOutputStream fout = new FileOutputStream(outfile);  
  15.         // 获取输入输出通道  
  16.         FileChannel fcin = fin.getChannel();  
  17.         FileChannel fcout = fout.getChannel();  
  18.         // 创建缓冲区  
  19.         ByteBuffer buffer = ByteBuffer.allocate(1024);  
  20.         while (true) {  
  21.             // clear方法重设缓冲区,使它可以接受读入的数据  
  22.             buffer.clear();  
  23.             // 从输入通道中将数据读到缓冲区  
  24.             int r = fcin.read(buffer);  
  25.             // read方法返回读取的字节数,可能为零,如果该通道已到达流的末尾,则返回-1  
  26.             if (r == -1) {  
  27.                 break;  
  28.             }  
  29.             // flip方法让缓冲区可以将新读入的数据写入另一个通道  
  30.             buffer.flip();  
  31.             // 从输出通道中将数据写入缓冲区  
  32.             fcout.write(buffer);  
  33.         }  
  34.     }  
  35. }  

 

其中 buffer 内部结构如下 ( 下图拷贝自资料 ):


图2:buffer内部结构 

一个 buffer 主要由 position,limit,capacity 三个变量来控制读写的过程。此三个变量的含义见如下表格:

参数

写模式    

读模式

position

当前写入的单位数据数量。

当前读取的单位数据位置。

limit

代表最多能写多少单位数据和容量是一样的。

代表最多能读多少单位数据,和之前写入的单位数据量一致。

capacity

buffer 容量

buffer 容量

Buffer 常见方法:

flip(): 写模式转换成读模式

rewind() :将 position 重置为 0 ,一般用于重复读。

clear() :清空 buffer ,准备再次被写入 (position 变成 0 limit 变成 capacity)

compact(): 将未读取的数据拷贝到 buffer 的头部位。

mark() reset():mark 可以标记一个位置, reset 可以重置到该位置。

Buffer 常见类型: ByteBuffer MappedByteBuffer CharBuffer DoubleBuffer FloatBuffer IntBuffer LongBuffer ShortBuffer

channel 常见类型 :FileChannel DatagramChannel(UDP) SocketChannel(TCP) ServerSocketChannel(TCP)

在本机上面做了个简单的性能测试。我的笔记本性能一般。 ( 具体代码可以见附件。见 nio.sample.filecopy 包下面的例子 ) 以下是参考数据:

       场景 1 Copy 一个 370M 的文件

       场景 2: 三个线程同时拷贝,每个线程拷贝一个 370M 文件

 

场景

FileInputStream+

FileOutputStream

FileInputStream+

BufferedInputStream+

FileOutputStream

ByteBuffer+

FileChannel

MappedByteBuffer

+FileChannel

场景一时间 ( 毫秒 )                 

25155

17500

19000

16500

场景二时间 ( 毫秒 )

69000

67031

74031

71016

5.    nio.charset

字符编码解码 : 字节码本身只是一些数字,放到正确的上下文中被正确被解析。向 ByteBuffer 中存放数据时需要考虑字符集的编码方式,读取展示 ByteBuffer 数据时涉及对字符集解码。

Java.nio.charset 提供了编码解码一套解决方案。

以我们最常见的 http 请求为例,在请求的时候必须对请求进行正确的编码。在得到响应时必须对响应进行正确的解码。

以下代码向 baidu 发一次请求,并获取结果进行显示。例子演示到了 charset 的使用。

例子 2BaiduReader.java

Java代码  收藏代码
  1. package nio.readpage;  
  2.   
  3. import java.nio.ByteBuffer;  
  4. import java.nio.channels.SocketChannel;  
  5. import java.nio.charset.Charset;  
  6. import java.net.InetSocketAddress;  
  7. import java.io.IOException;  
  8. public class BaiduReader {  
  9.     private Charset charset = Charset.forName("GBK");// 创建GBK字符集  
  10.     private SocketChannel channel;  
  11.     public void readHTMLContent() {  
  12.         try {  
  13.             InetSocketAddress socketAddress = new InetSocketAddress(  
  14. ""80);  
  15. //step1:打开连接  
  16.             channel = SocketChannel.open(socketAddress);  
  17.         //step2:发送请求,使用GBK编码  
  18.             channel.write(charset.encode("GET " + "/ HTTP/1.1" + "\r\n\r\n"));  
  19.             //step3:读取数据  
  20.             ByteBuffer buffer = ByteBuffer.allocate(1024);// 创建1024字节的缓冲  
  21.             while (channel.read(buffer) != -1) {  
  22.                 buffer.flip();// flip方法在读缓冲区字节操作之前调用。  
  23.                 System.out.println(charset.decode(buffer));  
  24.                 // 使用Charset.decode方法将字节转换为字符串  
  25.                 buffer.clear();// 清空缓冲  
  26.             }  
  27.         } catch (IOException e) {  
  28.             System.err.println(e.toString());  
  29.         } finally {  
  30.             if (channel != null) {  
  31.                 try {  
  32.                     channel.close();  
  33.                 } catch (IOException e) {  
  34.                 }  
  35.             }  
  36.         }  
  37.     }  
  38.     public static void main(String[] args) {  
  39.         new BaiduReader().readHTMLContent();  
  40.     }  
  41. }  
 

6.      非阻塞 IO

关于非阻塞 IO 将从何为阻塞、何为非阻塞、非阻塞原理和异步核心 API 几个方面来理解。

何为阻塞?

一个常见的网络 IO 通讯流程如下 :



 

图3:网络通讯基本过程

从该网络通讯过程来理解一下何为阻塞 :

在以上过程中若连接还没到来,那么 accept 会阻塞 , 程序运行到这里不得不挂起, CPU 转而执行其他线程。

在以上过程中若数据还没准备好, read 会一样也会阻塞。

阻塞式网络 IO 的特点:多线程处理多个连接。每个线程拥有自己的栈空间并且占用一些 CPU 时间。每个线程遇到外部为准备好的时候,都会阻塞掉。阻塞的结果就是会带来大量的进程上下文切换。且大部分进程上下文切换可能是无意义的。比如假设一个线程监听一个端口,一天只会有几次请求进来,但是该 cpu 不得不为该线程不断做上下文切换尝试,大部分的切换以阻塞告终。

 

何为非阻塞?

下面有个隐喻:

一辆从 A 开往 B 的公共汽车上,路上有很多点可能会有人下车。司机不知道哪些点会有哪些人会下车,对于需要下车的人,如何处理更好?

1. 司机过程中定时询问每个乘客是否到达目的地,若有人说到了,那么司机停车,乘客下车。 ( 类似阻塞式 )

2. 每个人告诉售票员自己的目的地,然后睡觉,司机只和售票员交互,到了某个点由售票员通知乘客下车。 ( 类似非阻塞 )

很显然,每个人要到达某个目的地可以认为是一个线程,司机可以认为是 CPU 。在阻塞式里面,每个线程需要不断的轮询,上下文切换,以达到找到目的地的结果。而在非阻塞方式里,每个乘客 ( 线程 ) 都在睡觉 ( 休眠 ) ,只在真正外部环境准备好了才唤醒,这样的唤醒肯定不会阻塞。

  非阻塞的原理

把整个过程切换成小的任务,通过任务间协作完成。

由一个专门的线程来处理所有的 IO 事件,并负责分发。

事件驱动机制:事件到的时候触发,而不是同步的去监视事件。

线程通讯:线程之间通过 wait,notify 等方式通讯。保证每次上下文切换都是有意义的。减少无谓的进程切换。

以下是异步 IO 的结构:



 

图4:非阻塞基本原理

 

Reactor 就是上面隐喻的售票员角色。每个线程的处理流程大概都是读取数据、解码、计算处理、编码、发送响应。

异步 IO 核心 API

Selector

异步 IO 的核心类,它能检测一个或多个通道 (channel) 上的事件,并将事件分发出去。

使用一个 select 线程就能监听多个通道上的事件,并基于事件驱动触发相应的响应。而不需要为每个 channel 去分配一个线程。

SelectionKey

包含了事件的状态信息和时间对应的通道的绑定。

例子 1 单线程实现监听两个端口。 ( nio.asyn 包下面的例子。 )

例子 2 NIO 线程协作实现资源合理利用。 (wait,notify) ( nio.asyn.multithread 下的例子 )

阅读(1242) | 评论(0) | 转发(0) |
0

上一篇:[Java] Charset

下一篇:[Network] RFC

给主人留下些什么吧!~~