讲主要概述Linux设备驱动框架、驱动程序的配置文件及常用的加载驱动程序的方法;并且介绍Red Hat Linux安装程序是如何加载驱动的,通过了解这个过程, 我们可以自己将驱动程序放到引导盘中;安装完系统后,使用kudzu自动配置硬件程序。
Linux设备驱动概述
1. 内核和驱动模块
操作系统是通过各种驱动程序来驾驭硬件设备,它为用户屏蔽了各种各样的设备,驱动硬件是操作系统最基本的功能,并且提供统一的操作方式。正如我们查看屏幕
上的文档时,不用去管到底使用nVIDIA芯片,还是ATI芯片的显示卡,只需知道输入命令后,需要的文字就显示在屏幕上。硬件驱动程序是操作系统最基本
的组成部分,在Linux内核源程序中也占有较高的比例。
Linux内核中采用可加载的模块化设计(LKMs ,Loadable Kernel Modules),一般情况下编译的Linux内核是支持可插入式模块的,也就是将最基本的核心代码编译在内核中,其它的代码可以选择是在内核中,或者编译为内核的模块文件。
如果需要某种功能,比如需要访问一个NTFS分区,就加载相应的NTFS模块。这种设计可以使内核文件不至于太大,但是又可以支持很多的功能,必要时动态地加载。这是一种跟微内核设计不太一样,但却是切实可行的内核设计方案。
我们常见的驱动程序就是作为内核模块动态加载的,比如声卡驱动和网卡驱动等,而Linux最基础的驱动,如CPU、PCI总线、TCP/IP协议、APM
(高级电源管理)、VFS等驱动程序则编译在内核文件中。有时也把内核模块就叫做驱动程序,只不过驱动的内容不一定是硬件罢了,比如ext3文件系统的驱
动。
理解这一点很重要。因此,加载驱动时就是加载内核模块。下面来看一下有关模块的命令,在加载驱动程序要用到它们:lsmod、modprob、insmod、rmmod、modinfo。
lsmod 列出当前系统中加载的模块,例如:
#lsmod (与cat /proc/modules 得出的内容是一致的) Module Size Used by Not tainted radeon 115364 1 agpgart 56664 3 nls_iso8859-1 3516 1 (autoclean) loop 12120 3 (autoclean) smbfs 44528 2 (autoclean) parport_pc 19076 1 (autoclean) lp 9028 0 (autoclean) parport 37088 1 (autoclean) [parport_pc lp] autofs 13364 0 (autoclean) (unused) ds 8704 2 yenta_socket 13760 2 pcmcia_core 57184 0 [ds yenta_socket] tg3 55112 1 sg 36940 0 (autoclean) sr_mod 18104 0 (autoclean) microcode 4724 0 (autoclean) ide-scsi 12208 0 scsi_mod 108968 3 [sg sr_mod ide-scsi] ide-cd 35680 0 cdrom 33696 0 [sr_mod ide-cd] nls_cp936 124988 1 (autoclean) nls_cp437 5148 1 (autoclean) vfat 13004 1 (autoclean) fat 38872 0 (autoclean) [vfat] keybdev 2976 0 (unused) mousedev 5524 1 hid 22212 0 (unused) input 5888 0 [keybdev mousedev hid] ehci-hcd 20104 0 (unused) usb-uhci 26412 0 (unused) usbcore 79392 1 [hid ehci-hcd usb-uhci] ext3 91592 2 jbd 52336 2 [ext3]
|
上面显示了当前系统中加载的模块,左边数第一列是模块名,第二列是该模块大小,第三列则是该模块使用的数量。
如果后面为unused,则表示该模块当前没在使用。如果后面有autoclean,则该模块可以被rmmod -a命令自动清洗。rmmod
-a命令会将目前有autoclean的模块卸载,如果这时候某个模块未被使用,则将该模块标记为autoclean。如果在行尾的[
]括号内有模块名称,则括号内的模块就依赖于该模块。例如:
cdrom 34144 0 [sr_mod ide-cd]
|
其中ide-cd及sr_mod模块就依赖于cdrom模块。
系统的模块文件保存在/lib/modules/2.4.XXX/kerne目录中,根据分类分别在fs、net等子目录中,他们的互相依存关系则保存在/lib/modules/2.4.XXX/modules.dep 文件中。
需要注意,该文件不仅写入了模块的依存关系,同时内核查找模块也是在这个文件中,使用modprobe命令,可以智能插入模块,它可以根据模块间依存关
系,以及/etc/modules.conf文件中的内容智能插入模块。比如希望加载ide的光驱驱动,则可运行下面命令:
此时会发现,cdrom模块也会自动插入。
insmod也是插入模块的命令,但是它不会自动解决依存关系,所以一般加载内核模块时使用的命令为modprobe。
rmmod可以删除模块,但是它只可以删除没有使用的模块。
Modinfo用来查看模块信息,如modinfo -d cdrom,在Red Hat Linux系统中,模块的相关命令在modutils的RPM包中。
2.设备文件
当我们加载了设备驱动模块后,应该怎样访问这些设备呢?Linux是一种类Unix系统,Unix的一个基本特点是“一切皆为文件”,它抽象了设备的处理,将所有的硬件设备都像普通文件一样看待,也就是说硬件可以跟普通文件一样来打开、关闭和读写。
系统中的设备都用一个设备特殊文件代表,叫做设备文件,设备文件又分为Block(块)型设备文件、Character(字符)型设备文件和Socket
(网络插件)型设备文件。Block设备文件常常指定哪些需要以块(如512字节)的方式写入的设备,比如IDE硬盘、SCSI硬盘、光驱等。
而Character型设备文件常指定直接读写,没有缓冲区的设备,比如并口、虚拟控制台等。Socket(网络插件)型设备文件指定的是网络设备访问的BSD socket 接口。
#ls -l /dev/hda /dev/video0 /dev/log brw-rw---- 1 root disk 3, 0 Sep 15 2003 /dev/hda srw-rw-rw- 1 root root 0 Jun 3 16:55 /dev/log crw------- 1 root root 81, 0 Sep 15 2003 /dev/video0
|
上面显示的是三种设备文件,注意它们最前面的字符,Block型设备为b,Character型设备为c,Socket设备为s。
由此可以看出,设备文件都放在/dev目录下,比如硬盘就是用/dev/hd*来表示,/dev/hda表示第一个IDE接口的主设备,/dev/hda1表示第一个硬盘上的第一个分区;而/dev/hdc 表示第二个IDE接口的主设备。可以使用下面命令:
#dd if=/dev/hda of=/root/a.img bs=446 count=1
|
把第一个硬盘上前446个字节的MBR信息导入到a.img文件中。
对于Block和Character型设备,使用主(Major)和辅(minor)设备编号来描述设备。主设备编号来表示某种驱动程序,同一个设备驱动
程序模块所控制的所有设备都有一个共同的主设备编号,而辅设备编号用于区分该控制器下不同的设备,比如,/dev/hda1(block
3/1)、/dev/hda2(block 3/2 )和/dev/hda3( block3/3
)都代表着同一块硬盘的三个分区,他们的主设备号都是3,辅设备号分别为1、2、3。 这些设备特殊文件用mknod命令来创建:
我们就在当前位置创建出一个与 /dev/hda一样的、可以访问第一个IDE设备主硬盘的文件,文件名叫做harddisk。
使用下面命令可以查看设备编号:
#file /dev/hda /dev/hda: block special (3/0)
|
其中Block代表/dev/hda是系统的Block型(块型)设备文件,它的主设备编号为3,辅设备编号为0。
#ls -l /dev/hda /dev/hdb brw-rw---- 1 root disk 3, 0 Sep 15 2003 /dev/hda brw-rw---- 1 root disk 3, 64 Sep 15 2003 /dev/hdb
|
使用ls -l也可以看到设备编号,/dev/hdb代表第一个IDE接口的从设备(Slave)也是Block设备,编号为(3/64),还有另外一种设备文件是/dev/tty*。使用如下命令:
#echo "hello tty1" > /dev/tty1
|
将字符串“hello tty1”输出到/dev/tty1代表的第一个虚拟控制台上,此时按“Alt + F1”可以看到该字符出现在屏幕上,这个特殊的文件就代表着我们的第一虚拟控制台。
#file /dev/tty1 /dev/tty1: character special (4/1)
|
由上可以看到,它的类型为Character 型(字符型)设备文件,主设备号为4,辅设备号为1。同样,/dev/tty2代表着第二个虚拟控制台,是Character设备,编号为 (4/2)。
当将/dev/cdrom加载到/mnt/cdrom中时,只要访问/mnt/cdrom系统就会自动引入到/dev/cdrom对应的驱动程序中,访问实际的数据。
有关设备文件的编号可以看内核文档/usr/src/linux-2.*/Documentation/devices.txt 文件(在Kernel的源文件解包后的Documentation目录中),其中详细叙述了各种设备文件编号的意义。
3.使用/proc目录中的文件监视驱动程序的状态
通过设备文件怎样访问到相应的驱动程序呢?它们中间有一个桥梁,那就是proc文件系统,它一般会被加载到/proc目录。访问设备文件时,操作系统通常
会通过查找/proc目录下的值,确定由哪些驱动模块来完成任务。如果proc文件系统没有加载,访问设备文件时就会出现错误。
Linux系统中proc文件系统是内核虚拟的文件系统,其中所有的文件都是内核中虚拟出来的,各种文件实际上是当前内核在内存中的参数。它就像是专门为
访问内核而打开的一扇门,比如访问/proc/cpuinfo文件,实际上就是访问目前的CPU的参数,每一次系统启动时系统都会通过
/etc/fstab中设置的信息自动将proc文件系统加载到/proc目录下:
# grep proc /etc/fstab none /proc proc defaults 0 0 此外,也可以通过mount命令手动加载: # mount -t proc none /proc
|
通过/proc目录下的文件可以访问或更改内核参数,可以通过/proc目录查询驱动程序的信息。下面先让我们看一下/proc目录中的信息:
# ls /proc 1 4725 5032 5100 5248 5292 crypto kcore partitions 14 4794 5044 5110 5250 5293 devices kmsg pci 2 4810 5075 5122 5252 5295 dma ksyms self 3 4820 5079 5132 5254 5345 driver loadavg slabinfo 4 4831 5080 5151 5256 6 execdomains locks stat 4316 4910 5081 5160 5258 7 fb lvm swaps 4317 4912 5082 5170 5262 70 filesystems mdstat sys 4318 4924 5083 5180 5271 8 fs meminfo sysrq-trigger 4319 4950 5084 5189 5287 9 ide misc sysvipc 4620 4963 5085 5232 5288 apm interrupts modules tty 4676 5 5086 5242 5289 bus iomem mounts uptime 4680 5005 5087 5244 5290 cmdline ioports mtrr version 4706 5018 5088 5246 5291 cpuinfo irq net
|
需要知道的是,这些文件都是实时产生的虚拟文件,访问它们就是访问内存中真实的数据。这些数据是实时变化产生的,可以通过以下命令来查看文件的具体值:
# cat /proc/interrupts CPU0 0: 50662 XT-PIC timer 1: 3 XT-PIC keyboard 2: 0 XT-PIC cascade 5: 618 XT-PIC ehci-hcd, eth1 8: 1 XT-PIC rtc 9: 0 XT-PIC usb-uhci, usb-uhci 11: 50 XT-PIC usb-uhci, eth0 12: 16 XT-PIC PS/2 Mouse 14: 8009 XT-PIC ide0 15: 0 XT-PIC ide1 NMI: 0 ERR: 0
|
其它文件的含意见表1所示。
/proc/sys目录下的文件一般可以直接更改,相当于直接更改内核的运行参数,例如:
# echo 1 > /proc/sys/net/ipv4/ip_forward
|
上面代码可以将内核中的数据包转发功能打开。
另外,Linux系统中提供一些命令来查询系统的状态,如free可以查看目前的内存使用情况,ide_info可以查看ide设备的信息,例如:
类似的命令还有scsi_info,可以查看SCSI设备的信息。这些命令一般也是查询/proc目录下的文件,并返回结果。
系统初始化过程驱动程序的安装
在Linux安装过程中,系统上的硬件会被检测,基于检测到的结果安装程序会决定哪些模块需要在引导时被载入。Red Hat的安装程序为anaconda,它提供了自动检测硬件,并且安装的机制。
但是,如果计算机内的某些硬件没有默认的驱动程序,比如一块SCSI卡,我们可以在启动后的boot提示符下,输入“linux dd”,在加载完内核后,系统会自动提示插入驱动盘,这时就有机会把该硬件的Linux驱动程序装入。
如果在安装系统时,某种硬件总是因为中断冲突(ISA总线的设备较常见,比如一块ISA网卡)没法正常驱动,或者是缺少驱动程序,那么可以在boot提示
符下输入“linux
noprobe”。在这种模式下,安装程序不会自动配置找到的硬件,可以自己来选择现有驱动,配置驱动程序的参数,或者选择用光盘或软盘加载驱动程序。
定制引导盘
系统启动时是如何加载驱动的?下面让我们来看一下Red
Hat的安装光盘是怎样引导的。当Linux安装光盘启动时,加载位于光盘上isolinux中的内核文件vmlinuz,内核运行完毕后,又将
initrd.img的虚拟文件系统加载到内存中。这个文件为ext2文件系统的镜像,经过gzip压缩,可以通过以下步骤查看该镜像中的内容:
# mount /mnt/cdrom # mkdir /mnt/imgdir # gunzip < /mnt/cdrom/isolinux/initrd.img > /ext2img # mount -t ext2 -o loop /ext2img /mnt/imgdir # cd /mnt/imgdir # ls -F bin@ dev/ etc/ linuxrc@ lost+found/ modules/ proc/ sbin/ tmp/ var/ # cd modules # ls module-info modules.cgz modules.dep modules.pcimap pcitable
|
其中modules.dep为模块的注册文件,同时有各种模块的依存关系。modules.cgz为cpio的打包文件,实际的各种驱动模块就在该文件中。我们可以通过以下命令解包:
# cpio -idmv < modules.cgz
|
由此可以看到,解包出来的目录2.4.21-4XXX。进入该目录下的i386目录,就可以看到当前启动盘中支持的所以驱动程序:
# ls 3c59x.o 3w-xxxx.o 8139cp.o 8139too.o 8390.o aacraid.o acenic.o aic79xx.o ……
|
若希望在系统中加入需要的驱动程序,可以相应地修改这些文件,比如在modules.dep中加入该模块的名字和依存关系,将编译好的驱动模块文件加入modules.cgz中,这样就可以制定自己的安装光盘。
硬盘上的系统启动过程与上面类似,但是initrd的镜像文件要更简单些,一般在initrd-2.4.XXX.img的虚拟文件系统中,只会在/lib
目录下包含ext3.o jbd.o
lvm-mod.o等少数文件,用来驱动硬盘上的ext3的文件系统。加载文件系统后,就可以使用/lib/modules/2.4.XXX/下的
modules.dep文件及Kernel目录中的各种驱动文件。
自动配置安装
如果安装完Linux系统后,又添加了新的硬件,那么系统必须载入正确的驱动程序才可以使用它。在Red Hat
Linux中,可以使用kudzu来配置硬件。这是PnP设备的检测程序,当系统使用新硬件引导后,运行kudzu(默认会自动运行),如果新硬件被支
持,那么它就会被自动检测到。该程序还会为它配置驱动模块,把结果写入到文件/etc/sysconfig/hwconf中,kudzu可以通过对比这个
文件发现新安装的硬件,并进行配置;也可以通过编辑模块配置文件/etc/modules.conf来手工指定加载模块。
Kudzu服务默认每次启动时都要运行,如果需要缩短启动时间,使用下面命令可以停止系统启动时的kudzu服务:
如果要安装新的硬件,可以手动运行kudzu程序。
那么kudzu程序如何认识硬件的呢?可以查看/usr/share/hwdata/目录下的文件,根据这些文件中的PnP信息,kudzu可以识别各种硬件设备。
以上介绍了Linux下驱动程序的大体结构、主要的加载方式和相关配置文件,在安装Linux时加载驱动程序,并且根据需要定制自己的引导盘,在安装完成后安装新的、即插即用硬件。下一讲开始,我们将学习具体硬件驱动的安装方法。