Chinaunix首页 | 论坛 | 博客
  • 博客访问: 11706716
  • 博文数量: 8065
  • 博客积分: 10002
  • 博客等级: 中将
  • 技术积分: 96708
  • 用 户 组: 普通用户
  • 注册时间: 2008-04-16 17:06
文章分类

全部博文(8065)

文章存档

2008年(8065)

分类: 服务器与存储

2008-09-18 11:46:38

   RAID0

  Disk striping也称为RAID0,很多人以为RAID0没有甚么,其实这是非常错误的观念,因为RAID0使磁盘的输出入有最高的效率。而磁盘阵列有更好效率的原因除数据分段外,它可以同时执行多个输出入的要求,因为阵列中的每一个磁盘都能独立动作,分段放在不同的磁盘,不同的磁盘可同时作读写,而且能在快取内存及磁盘作并行存取(parallel access)的动作,但只有硬件的磁盘阵列才有此性能表现。从上面两点我们可以看出,disk spanning定义了RAID的基本形式,提供了一个便宜、灵活、高性能的系统结构,而disk striping解决了数据的存取效率和磁盘的利用率问题,RAID1至RAID5是在此基础上提供磁盘安全的方案。

  RAID1

  RAID1是使用磁盘镜像(disk mirroring)的技术。磁盘镜像应用在RAID1之前就在很多系统中使用,它的方式是在工作磁盘(working disk)之外再加一额外的备份磁盘(backup disk),两个磁盘所储存的数据完全一样,数据写入工作磁盘的同时亦写入备份磁盘。磁盘镜像不见得就是RAID1,如Novell Netware亦有提供磁盘镜像的功能,但并不表示Netware有了RAID1的功能。一般磁盘镜像和RAID1有二点最大的不同:RAID1无工作磁盘和备份磁盘之分,多个磁盘可同时动作而有重叠(over lamping)读取的功能,甚至不同的镜像磁盘可同时作写入的动作,这是一种最佳化的方式,称为负载平衡(load-balance)。例如有多个用户在同一时间要读取数据,系统能同时驱动互相镜像的磁盘,同时读取数据,以减轻系统的负载,增加I/O的性能。RAID1的磁盘是以磁盘延伸的方式形成阵列,而数据是以数据分段的方式作储存,因而在读取时,它几乎和RAID0有同样的性能。从RAID的结构就可以很清楚的看出RAID1和一般磁盘镜像的不同。

  读取数据时可用到所有的磁盘,充分发挥数据分段的优点;写入数据时,因为有备份,所以要写入两个磁盘,其效率是N/2,磁盘空间的使用率也只有全部磁盘的一半。很多人以为RAID1要加一个额外的磁盘,形成浪费而不看好RAID1,事实上磁盘越来越便宜,并不见得造成负担,况且RAID1有最好的容错 (fault tolerance)能力,其效率也是除RAID0之外最好的。在磁盘阵列的技术上,从RAID1到RAID5,不停机的意思表示在工作时如发生磁盘故障,系统能持续工作而不停顿,仍然可作磁盘的存取,正常的读写数据;而容错则表示即使磁盘故障,数据仍能保持完整,可让系统存取到正确的数据,而SCSI 的磁盘阵列更可在工作中抽换磁盘,并可自动重建故障磁盘的数据。磁盘阵列之所以能做到容错及不停机,是因为它有冗余的磁盘空间可资利用,这也就是 Redundant的意义。

  RAID2

  RAID2是把数据分散为位(bit)或块(block),加入海明码Hamming Code,在磁盘阵列中作间隔写入(interleaving)到每个磁盘中,而且地址(address)都一样,也就是在各个磁盘中,其数据都在相同的磁道(cylinder or track)及扇区中。RAID2的设计是使用共轴同步(spindle synchronize)的技术,存取数据时,整个磁盘阵列一起动作,在各作磁盘的相同位置作平行存取,所以有最好的存取时间(access time),其总线(bus)是特别的设计,以大带宽(band wide)并行传输所存取的数据,所以有最好的传输时间(transfer time)。在大型档案的存取应用,RAID2有最好的性能,但如果档案太小,会将其性能拉下来,因为磁盘的存取是以扇区为单位,而RAID2的存取是所有磁盘平行动作,而且是作单位元的存取,故小于一个扇区的数据量会使其性能大打折扣。RAID2是设计给需要连续且大量数据的电脑使用的,如大型电脑 (main frame to super computer)、作影像处理或CAD/CAM的工作站(workstation)等,并不适用于一般的多用户环境、网络服务器(network server),小型机或PC RAID2的安全采用内存阵列(memory array)的技术,使用多个额外的磁盘作单位错误校正(single-bit correction)及双位错误检测(double-bit detection);至于需要多少个额外的磁盘,则视其所采用的方法及结构而定,例如八个数据磁盘的阵列可能需要三个额外的磁盘,有三十二个数据磁盘的高档阵列可能需要七个额外的磁盘。

  RAID3

  RAID3的数据储存及存取方式都和RAID2一样,但在安全方面以奇偶校验(parity check)取代海明码做错误校正及检测,所以只需要一个额外的校检磁盘(parity disk)。奇偶校验值的计算是以各个磁盘的相对应位作XOR的逻辑运算,然后将结果写入奇偶校验磁盘,任何数据的修改都要做奇偶校验计算,如某一磁盘故障,换上新的磁盘后,整个磁盘阵列(包括奇偶校验磁盘)需重新计算一次,将故障磁盘的数据恢复并写入新磁盘中;如奇偶校验磁盘故障,则重新计算奇偶校验值, 以达容错的要求。较之RAID1及RAID2,RAID3有85的磁盘空间利用率,其性能比RAID2稍差,因为要做奇偶校验计算;共轴同步的平行存取在读档案时有很好的性能,但在写入时较慢,需要重新计算及修改奇偶校验磁盘的内容。RAID3和RAID2有同样的应用方式,适用大档案及大量数据输出入的应用,并不适用于PC及网络服务器。

  RAID4

  RAID4也使用一个校验磁盘,但和RAID3不一样,RAID4是以扇区作数据分段,各磁盘相同位置的分段形成一个校验磁盘分段(parity block),放在校验磁盘。这种方式可在不同的磁盘平行执行不同的读取命今,大幅提高磁盘阵列的读取性能;但写入数据时,因受限于校验磁盘,同一时间只能作一次,启动所有磁盘读取数据形成同一校验分段的所有数据分段,与要写入的数据做好校验计算再写入。即使如此,小型档案的写入仍然比RAID3要快,因其校验计算较简单而非作位(bit level)的计算;但校验磁盘形成RAID4的瓶颈,降低了性能,因有RAID5而使得RAID4较少使用。

  RAID5

  RAID5避免了RAID4的瓶颈,方法是不用校验磁盘而将校验数据以循环的方式放在每一个磁盘中,磁盘阵列的第一个磁盘分段是校验值,第二个磁盘至后一个磁盘再折回第一个磁盘的分段是数据,然后第二个磁盘的分段是校验值,从第三个磁盘再折回第二个磁盘的分段是数据,以此类推,直到放完为止。图中的第一个parity block是由A0,A1...,B1,B2计算出来,第二个parity block是由B3,B4,...,C4,D0计算出来,也就是校验值是由各磁盘同一位置的分段的数据所计算出来。这种方式能大幅增加小档案的存取性能, 不但可同时读取,甚至有可能同时执行多个写入的动作,如可写入数据到磁盘1而其parityblock在磁盘2,同时写入数据到磁盘4而其parity block在磁盘1,这对联机交易处理(OLTP On-Line Transaction Processing)如银行系统、金融、股市等或大型数据库的处理提供了最佳的解决方案(solution),因为这些应用的每一笔数据量小,磁盘输出入频繁而且必须容错。事实上RAID5的性能并无如此理想,因为任何数据的修改,都要把同一parity block的所有数据读出来修改后,做完校验计算再写回去,也就是RMW cycle(Read-Modify-Write cycle,这个cycle没有包括校验计算);正因为牵一而动全身,所以:

  R:N(可同时读取所有磁盘)
  W:1(可同时写入磁盘数)
  S:N-1(利用率)

  RAID5的控制比较复杂,尤其是利用硬件对磁盘阵列的控制,因为这种方式的应用比其他的RAID level要掌握更多的事情,有更多的输出入需求,既要速度快,又要处理数据,计算校验值,做错误校正等,所以价格较高;其应用最好是OLTP,至于用于图像处理等,不见得有最佳的性能。2.磁盘阵列的额外容错功能:Spare or Stand by driver事实上容错功能已成为磁盘阵列最受青睐的特性,为了加强容错的功能以及使系统在磁盘故障的情况下能迅速的重建数据,以维持系统的性能,一般的磁盘阵列系统都可使用热备份(hot spare or hot stand by driver)的功能,所谓热备份是在建立(configure)磁盘阵列系统的时候,将其中一磁盘指定为后备磁盘,此一磁盘在平常并不操作,但若阵列中某一磁盘发生故障时,磁盘阵列即以后备磁盘取代故障磁盘,并自动将故障磁盘的数据重建(rebuild)在后备磁盘之上,因为反应快速,加上快取内存减少了磁盘的存取,所以数据重建很快即可完成,对系统的性能影响很小。对于要求不停机的大型数据处理中心或控制中心而言,热备份更是一项重要的功能,因为可避免晚间或无人值守时发生磁盘故障所引起的种种不便。

阅读(605) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~