随着企业
用户数据呈现指数级增长,对于
数据中心的标准要求也水涨船高,首当其冲的是现有的网络基础设施和
存储系统不得不加速扩容的步伐。如若仅简单地复制原有的系统,单纯以增加硬件数量来获取更高的
性能,该模式下的系统扩容远远不足以应对随之而来的信息挑战。在统筹评估整个系统的过程中,除性能价格比这一考核指标外,用户开始越来越重视性能能耗比这一参数。采用数据压缩技术,明显降低CPU负载,改善
存储系统的性能,节省功耗,真正满足更高效,更环保,更绿色的数据中心新诉求,已然提上了企业信息系统优化的历史日程。
所谓“数据压缩“,是指在一定的
数据存储空间要求下,将相对庞大的原始数据,重组为满足前述空间要求的数据集合,使得从该数据集合中
恢复出来的信息,能够与原始数据相一致,或者能够获得与原始数据相同的使用品质。相对于未采用压缩技术,采用不同的压缩技术之后,存储和传输中的数据会显著缩小,网络系统和存储系统的利用率因此提高。
从实际应用来说,“数据压缩“可从两方面来衡量:数据压缩速度和数据压缩率。当数据压缩应用于网络传输时,人们通常关注的是速度快慢;当数据压缩应用于数据存储中,则
问题的焦点转嫁到压缩率,即压缩后数据的大小。看似不相关的两个方面,其本质上是相辅相成的。一般桌面PC上广泛采用的ZIP和RAR算法,并不适合于存储应用。这主要是由于,ZIP和RAR算法本身的实现复杂度,使得这两种算法难以借力硬件实现。遗憾的是,软件实现带来的性能偏低,难以满足现有的存储系统高性能,低能耗的诉求。
比较图示:
综上图表中可以看出: 一般数据,主要是字符内容的压缩通常采用LZ系列的压缩算法,而Hifn公司拥有专利的LZS算法正是基于LZ系列压缩算法的基础上所做的扩展。LZS压缩算法既继承了LZ算法压缩率的诸多特性,同时兼备硬件逻辑实现简便,更高的压缩性能的良好品质。值得称道的是,LZS算法还会自动检测数据是否已经压缩,充分避免对已经压缩的数据进行重复压缩操作而导致的数据膨胀,即对于图片,音频和视频等多媒体文件,以及部分已经压缩过的文件,消除重复压缩导致数据无谓膨胀的影响。正是因为LZS压缩算法的优异特性,该算法已经被广泛深入地应用于网络和存储各个领域,并被ANSI,IETF,ATM论坛,Frame Relay论坛等国际标准组织和技术联盟采纳为业界标准的一部分。
阅读(954) | 评论(0) | 转发(0) |