Chinaunix首页 | 论坛 | 博客
  • 博客访问: 11292686
  • 博文数量: 8065
  • 博客积分: 10002
  • 博客等级: 中将
  • 技术积分: 96708
  • 用 户 组: 普通用户
  • 注册时间: 2008-04-16 17:06
文章分类

全部博文(8065)

文章存档

2008年(8065)

分类: 服务器与存储

2008-06-08 03:48:16

1、需求方有货物请求了,这个请求发送到调度厂房,调度人员开根据货主的要求给指定的子仓库打电话,电话号码是:区号+子仓库号码+楼层分机(片选+L-Bank寻址+行有效/选通)。那一层的搬运工接到电话后就开始预备工作。   2、当搬运工点亮所有储藏间的门牌(tRCD)之后,调度人员会告诉搬运工,货物放在哪个储藏间里(列寻址),假如货物很多,并且是连续存放的,调度员会通知搬运工:“一会儿要搬的时候,从起始房间开始连续将后面的n个房间的货物都搬出来,我就不再重复了”(突发传输)。但是,他告诉搬运工要等一下,要求所有大仓库的人员统一行动,先别出货。   3、根据事先的规定,搬运工在经过指定的时间后开始将货物扔到传送带上,传送带开始运转并将货物送到生产车间,由它来复制出全新的货物,然后再送到传送带上通过外运站向调度厂房运去。人们通常把从搬运工找到具体储藏间开始,到货物真正出现在送往调度厂房的传送带上的这段时间称之为“输出潜伏期”(CL),而从值班人把货物扔到传送带到货物开始传向调度厂房的这段时间,被称为“货物输出延迟”(tAC),它体现了值班人员的反应时间和生产车间的效率,也影响着仓库基地所在集团(DIMM)的名声。  
4、在这个搬运工工作的同时,由于电话对于编号相同的子仓库是并联的,所以其他子仓库相同楼层的搬运工也收到相同的命令,从相同编号的房间搬出货物,运向各自的生产车间。此时,同一批货物同时出现在各自的16条传送带上,并整洁地向调度厂房运去。   5、当货物传送完后,原始货物还要送回储藏间保管,这是必须的,但假如没有要求,货物可以一直保留在生产车间,假如再有需要就再生产,而不用再麻烦搬运工了(读出放大器相当于一个Cache)。调度人员接着会进行下一批货物的调度,当他发现下一批货物在上次操作的子仓库中,但不在刚才通话的那一层,只能再重新拨电话。这时,他通知各子仓库货物翻新运回,清理生产车间,之后挂断电话(预充电命令),这一切必须要在指定时间里(tRP)完成,然后才能给新的楼层打电话。搬运员接到通知后,就将这一层中所有房间的货物都拿到生产车间进行翻新(没有货物的就不用翻新),然后再搬回储藏间。干完这一切之后,搬运工挂了电话(关闭行)就可以休息了,他们称这种工作为“货物清理返运”(预充电)。这个工作的速度也要快,否则同样会影响集团名声。当然,这个工作可以让搬运工自动完成(自动预充电),只需调度员在当初下搬运指令时提醒一他:“货物运送完了,就进行货物清理返运吧,我不管了”(用A10地址线)。   6、当有货物要运来存储时,调度员在向子仓库发送货物的同时就给指定的楼层打电话,让他们预备好房间,此时货物已经到了寄存托运处,没有任何的运送延迟(写入延迟=0),搬运工在托运间的帮助下,向指定的储藏间运送货物,这可需要一定的时间了,他们称之为货物堆放时间(tWR),必须给足搬运工们这一时间,而不能在这期间里让他们干其他的工作,否则他们会令货物丢失并罢工…… (注:本插栏是对DRAM操作的形象性描述,谨供辅助性理解本专题,严谨的操作说明见上文。另外,在此请各位读者注重,将内存比喻为仓库只是为了形象化描述,而不要把内存等同理解为存储,它们是有本质的不同的,在本文的比喻中,它只是一个临时性仓库,这一点请大家分清,不要因此产生新的错误概念。) SDRAM的结构、时序与性能的关系(上)在讲完SDRAM的基本工作原理和主要操作之后,我们现在要重要分析一下SDRAM的时序与性能之间的关系,它不在局限于芯片本身,而是从整体的内存系统去分析。这也是广大DIYer所关心的话题。比如CL值对性能的影响有多大几乎是每个内存论坛都会有讨论,今天我们就具体探讨一下,其中的很多内容同样适用于DDR与RDRAM。这里需要强调一点,对于内存系统整体而言,一次内存访问就是对一个页的访问,这个页的定义已经在解释Full Page含义时讲明了。由于在P-Bank中,每个芯片的寻址都是一样的,所以可以将页访问“浓缩”等效为对每芯片中指定行的访问,这样可能比较好理解。但为了与官方标准统一,在下文中会经常用页来描述相关的内容,请读者注重理解。一、影响性能的主要时序参数所谓的影响性能是并不是指SDRAM的带宽,频率与位宽固定后,带宽也就不可更改了。但这是理想的情况,在内存的工作周期内,不可能总处于数据传输的状态,因为要有命令、寻址等必要的过程。但这些操作占用的时间越短,内存工作的效率越高,性能也就越好。非数据传输时间的主要组成部分就是各种延迟与潜伏期。通过上文的讲述,大家应该很明显看出有三个参数对内存的性能影响至关重要,它们是tRCD、CL和tRP。每条正规的内存模组都会在标识上注明这三个参数值,可见它们对性能的敏感性。以内存最主要的操作——读取为例。tRCD决定了行寻址(有效)至列寻址(读/写命令)之间的间隔,CL决定了列寻址到数据进行真正被读取所花费的时间,tRP则决定了相同L-Bank中不同工作行转换的速度。现在可以想象一下读取时可能碰到的几种情况(分析写入操作时不用考虑CL即可): 1、要寻址的行与L-Bank是空闲的。也就是说该L-Bank的所有行是关闭的,此时可直接发送行有效命令,数据读取前的总耗时为tRCD+CL,这种情况我们称之为页命中(PH,Page Hit)。 2、要寻址的行正好是前一个操作的工作行,也就是说要寻址的行已经处于选通有效状态,此时可直接发送列寻址命令,数据读取前的总耗时仅为CL,这就是所谓的背靠背(Back to Back)寻址,我们称之为页快速命中(PFH,Page Fast Hit)或页直接命中(PDH,Page Direct Hit)。 3、要寻址的行所在的L-Bank中已经有一个行处于活动状态(未关闭),这种现象就被称作寻址冲突,此时就必须要进行预充电来关闭工作行,再对新行发送行有效命令。结果,总耗时就是tRP+tRCD+CL,这种情况我们称之为页错失(PM,Page Miss)。显然,PFH是最理想的寻址情况,PM则是最糟糕的寻址情况。上述三种情况发生的机率各自简称为PHR——PH Rate、PFDR——PFH Rate、PMR——PM Rate。因此,系统设计人员(包括内存与北桥芯片)都尽量想提高PHR与PFHR,同时减少PMR,以达到提高内存工作效率的目的。二、增加PHR的方法显然,这与预充电治理策略有着直接的关系,目前有两种方法来尽量提高PHR。自动预充电技术就是其中之一,它自动的在每次行操作之后进行预充电,从而减少了日后对同一L-Bank不同行寻址时发生冲突的可能性。但是,假如要在当前行工作完成后马上打开同一L-Bank的另一行工作时,仍然存在tRP的延迟。怎么办?
阅读(413) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~