Chinaunix首页 | 论坛 | 博客
  • 博客访问: 807271
  • 博文数量: 296
  • 博客积分: 5376
  • 博客等级: 大校
  • 技术积分: 2298
  • 用 户 组: 普通用户
  • 注册时间: 2009-03-14 19:02
文章分类

全部博文(296)

文章存档

2023年(2)

2020年(2)

2018年(2)

2017年(26)

2016年(4)

2015年(19)

2014年(12)

2013年(26)

2012年(84)

2011年(50)

2010年(41)

2009年(28)

分类: 嵌入式

2012-07-31 10:04:01

串口操作需要的头文件

#include

#include

#include

#include

#include

#include

#include

#include

 

1.打开串口

在前面已经提到linux下的串口访问是以设备文件形式进行的,所以打开串口也即是打开文件的操作。函数原型可以如下所示:

int open(“DE_name”,int open_Status)

参数说明:

1)DE_name:要打开的设备文件名

比如要打开串口1,即为/dev/ttyS0

2)open_Status:文件打开方式,可采用下面的文件打开模式:

  O_RDONLY:以只读方式打开文件

  O_WRONLY:以只写方式打开文件

O_RDWR:以读写方式打开文件

O_APPEND:写入数据时添加到文件末尾

O_CREATE:如果文件不存在则产生该文件,使用该标志需要设置访问权限位mode_t

O_EXCL:指定该标志,并且指定了O_CREATE标志,如果打开的文件存在则会产生一个错误

O_TRUNC:如果文件存在并且成功以写或者只写方式打开,则清除文件所有内容,使得文件长度变为0

O_NOCTTY:如果打开的是一个终端设备,这个程序不会成为对应这个端口的控制终端,如果没有该标志,任何一个输入,例如键盘中止信号等,都将影响进程。

O_NONBLOCK:该标志与早期使用的O_NDELAY标志作用差不多。程序不关心DCD信号线的状态,如果指定该标志,进程将一直在休眠状态,直到DCD信号线为0。

函数返回值:

成功返回文件描述符,如果失败返回-1

例如:

Linux 下串口文件是位于 /dev 下的。串口一 为 /dev/ttyS0,串口二 为 /dev/ttyS1。打开串口是通过使用标准的文件打开函数操作:

int fd;

 

fd = open( "/dev/ttyS0", O_RDWR);

 if (fd==-1)

{

perror(" 提示错误!");

}

 

2.设置串口

最基本的设置串口包括波特率设置,效验位和停止位设置。串口的设置主要是设置

 struct termios 结构体的各成员值。

struct termio

{ unsigned short c_iflag;

unsigned short c_oflag;

unsigned short c_cflag;

unsigned short c_lflag;

unsigned char c_line;

unsigned char c_cc[NCC];

};

设置这个结构体很复杂,我这里就只说说常见的一些设置:

2.1 波特率设置

波特率的设置定义在,其包含在头文件里。

常用的波特率常数如下:

B0-------à0                     B1800-------à1800

B50-----à50                    B2400------à2400

B75-----à75                    B4800------à4800

B110----à110                 B9600------à9600

B134----à134.5              B19200-----à19200

B200----à200                 B38400------à38400

B300----à300                 B57600------à57600

B600----à600                 B76800------à76800

B1200---à1200              B115200-----à115200

假定程序中想要设置通讯的波特率,使用cfsetispeed( )和cfsetospeed( )函数来操作,获取波特率信息是通过cfgetispeed()和cfgetospeed()函数来完成的。

比如可以这样来指定串口通讯的波特率:

#include     //头文件定义

........

.......

struct termios opt;          

 

cfsetispeed(&opt,B9600 );

cfsetospeed(&opt,B9600);

.........

..........

一般来说,输入、输出的波特率应该是一致的。

下面是另一个修改波特率的代码:

struct termios Opt;

tcgetattr(fd, &Opt);

cfsetispeed(&Opt,B19200);

cfsetospeed(&Opt,B19200);

tcsetattr(fd,TCANOW,&Opt);

设置波特率的例子函数:

int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300,

B38400, B19200, B9600, B4800, B2400, B1200, B300, };

int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400,

19200, 9600, 4800, 2400, 1200, 300, };

void set_speed(int fd, int speed){

int i;

int status;

struct termios Opt;

tcgetattr(fd, &Opt);

for ( i= 0; i < sizeof(speed_arr) / sizeof(int); i++) {

if (speed == name_arr[i]) {

tcflush(fd, TCIOFLUSH);

cfsetispeed(&Opt, speed_arr[i]);

cfsetospeed(&Opt, speed_arr[i]);

status = tcsetattr(fd1, TCSANOW, &Opt);

if (status != 0) {

perror("tcsetattr fd1");

return;

}

tcflush(fd,TCIOFLUSH);

}

}

}

2.2 设置效验的函数:

int set_Parity(int fd,int databits,int stopbits,int parity)

{

struct termios options;

if ( tcgetattr( fd,&options) != 0) {

perror("SetupSerial 1");

return(FALSE);

}

options.c_cflag &= ~CSIZE;

switch (databits)

{

case 7:

options.c_cflag |= CS7;

break;

case 8:

options.c_cflag |= CS8;

break;

default:

fprintf(stderr,"Unsupported data sizen"); return (FALSE);

}

switch (parity)

{

case 'n':

case 'N':

options.c_cflag &= ~PARENB;

options.c_iflag &= ~INPCK;

break;

case 'o':

case 'O':

options.c_cflag |= (PARODD | PARENB);

options.c_iflag |= INPCK;

break;

case 'e':

case 'E':

options.c_cflag |= PARENB;

options.c_cflag &= ~PARODD;

options.c_iflag |= INPCK;

break;

case 'S':

case 's':

options.c_cflag &= ~PARENB;

options.c_cflag &= ~CSTOPB;break;

default:

fprintf(stderr,"Unsupported parityn");

return (FALSE);

}

2.3 设置停止位

switch (stopbits)

{

case 1:

options.c_cflag &= ~CSTOPB;

break;

case 2:

options.c_cflag |= CSTOPB;

break;

default:

fprintf(stderr,"Unsupported stop bitsn");

return (FALSE);

}

if (parity != 'n')

options.c_iflag |= INPCK;

tcflush(fd,TCIFLUSH);

options.c_cc[VTIME] = 150;

options.c_cc[VMIN] = 0;

if (tcsetattr(fd,TCSANOW,&options) != 0)

{

perror("SetupSerial 3");

return (FALSE);

}

return (TRUE);

}

 

    在上述代码中,有两句话特别重要:

options.c_cc[VTIME] = 0;   

options.c_cc[VMIN] = 13;

这两句话决定了对串口读取的函数read()的一些功能。我将着重介绍一下他们对read()函数的影响。

对串口操作的结构体是

Struct{

       tcflag_t   c_iflag;   

       tcflag_t   c_oflag;  

       tcflag_t   c_cflag;  

       tcflag_t   c_lflag;   

       cc_t        c_line;    

       cc_t        c_cc[NCCS]; 

}

其中cc_t, c_line只有在一些特殊的系统程序(比如,设置通过tty设备来通信的网络协议)中才会用。在数组c_cc中有两个下标(VTIMEVMIN)对应的元素不是控制符,并且只是在原始模式下有效。只有在原始模式下,他们决定了read()函数在什么时候返回。在标准模式下,除非设置了O_NONBLOCK选项,否则只有当遇到文件结束符或各行的字符都已经编辑完毕后才返回。

控制符VTIMEVMIN之间有着复杂的关系。VTIME定义要求等待的零到几百毫秒的时间量(通常是一个8位的unsigned char变量,取值不能大于cc_t)           VMIN定义了要求等待的最小字节数(不是要求读的字节数——read()的第三个参数才是指定要求读的最大字节数),这个字节数可能是0

l) 如果VTIME0VMIN定义了要求等待读取的最小字节数。函数read()只有在读取了VMIN个字节的数据或者收到一个信号的时候才返回。

2) 如果VMIN0VTIME定义了即使没有数据可以读取,read()函数返回前也要等待几百毫秒的时间量。这时,read()函数不需要像其通常情况那样要遇到一个文件结束标志才返回0

3) 如果VTIMEVMIN都不取0VTIME定义的是当接收到第一个字节的数据后开始计算等待的时间量。如果当调用read函数时可以得到数据,计时器马上开始计时。如果当调用read函数时还没有任何数据可读,则等接收到第一个字节的数据后,计时器开始计时。函数read可能会在读取到VMIN个字节的数据后返回,也可能在计时完毕后返回,这主要取决于哪个条件首先实现。不过函数至少会读取到一个字节的数据,因为计时器是在读取到第一个数据时开始计时的。

4) 如果VTIMEVMIN都取0,即使读取不到任何数据,函数read也会立即返回。同时,返回值0表示read函数不需要等待文件结束标志就返回了。

这就是这两个变量对read函数的影响。

 

2.4 串口属性配置

在程序中,很容易配置串口的属性,这些属性定义在结构体struct termios中。为在程序中使用该结构体,需要包含文件,该头文件定义了结构体struct termios。该结构体定义如下:

#define NCCS 19

struct termios {

             tcflag_t c_iflag;              

             tcflag_t c_oflag;              

             tcflag_t c_cflag;              

             tcflag_t c_ispeed;             

tcflag_t c_ospeed;             

             cc_t c_line;                  

             cc_t c_cc[NCCS];             

};

其中成员c_line在POSIX(Portable Operating System Interface for UNIX)系统中不使用。对于支持POSIX终端接口的系统中,对于端口属性的设置和获取要用到两个重要的函数是:

1).int tcsetattr(int fd,int opt_DE,*ptr

该函数用来设置终端控制属性,其参数说明如下:

fd:待操作的文件描述符

opt_DE:选项值,有三个选项以供选择:

TCSANOW:  不等数据传输完毕就立即改变属性

TCSADRAIN:等待所有数据传输结束才改变属性

TCSAFLUSH:清空输入输出缓冲区才改变属性

*ptr:指向termios结构的指针

函数返回值:成功返回0,失败返回-1。

2).int tcgetattr(int fd,*ptr

该函数用来获取终端控制属性,它把串口的默认设置赋给了termios数据数据结构,其参数说明如下:

fd:待操作的文件描述符

*ptr:指向termios结构的指针

函数返回值:成功返回0,失败返回-1。

2.5 注意的问题:

如果不是开发终端之类的,只是串口传输数据,而不需要串口来处理,那么使用原始模式(Raw Mode)方式来通讯,设置方式如下:

options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);

options.c_oflag &= ~OPOST;

3.读写串口 3.1 串口读操作(接收端)

open函数打开设备文件,函数返回一个文件描述符(file descriptors,fd),通过文件描述符来访问文件。读串口操作是通过read函数来完成的。函数原型如下:

int read(int fd, *buffer,length);

参数说明:

1).int fd:文件描述符

2).*buffer:数据缓冲区

3).length:要读取的字节数

函数返回值:

读操作成功读取返回读取的字节数,失败则返回-1。

3.2 串口写操作(发送端)

写串口操作是通过write函数来完成的。函数原型如下:

write(int fd, *buffer,length);

参数说明:

1).fd:文件描述符

2).*buffer:存储写入数据的数据缓冲区

3).length:写入缓冲去的数据字节数

函数返回值:

成功返回写入数据的字节数,该值通常等于length,如果写入失败返回-1。

例如:向终端设备发送初始化命令

设置好串口之后,读写串口就很容易了,把串口当作文件读写就是。

·发送数据

char buffer[1024];

int Length;int nByte;

nByte = write(fd, buffer ,Length)

 

4.关闭串口

关闭串口就是关闭文件。

close(fd);

5.例子

下面是一个简单的读取串口数据的例子,使用了上面定义的一些函数和头文件

#define FALSE -1

#define TRUE 0

int OpenDev(char *Dev)

{

int fd = open( Dev, O_RDWR );

//| O_NOCTTY | O_NDELAY

if (-1 == fd)

{

perror("Can't Open Serial Port");

return -1;

}

else

return fd;

}

int main(int argc, char **argv){

int fd;

int nread;

char buff[512];

char *dev = "/dev/ttyS1"; //串口二

fd = OpenDev(dev);

set_speed(fd,19200);

if (set_Parity(fd,8,1,'N') == FALSE) {

printf("Set Parity Errorn");

exit (0);

}

while (1) //循环读取数据

{

while((nread = read(fd, buff, 512))>0)

{

printf("nLen %dn",nread);

buff[nread+1] = '';

printf( "n%s", buff);

}

}

//close(fd);

// exit (0);

}

 

http://blog.sina.com.cn/s/blog_a59f006f01015bix.html
阅读(2446) | 评论(0) | 转发(1) |
给主人留下些什么吧!~~