我们接着上一节数据的接收来自看UDP的数据是如何发送的,上一节中我们贴出有关发送的代码,在那里只是为了让大家有一个印象
case SYS_SEND: err = sys_send(a0, (void __user *)a1, a[2], a[3]);
|
最终我们在上一节中看到发送数据都是调用的
__sock_sendmsg来完成的,朋友们忘记了可以回去看一下,我们直接贴出这个代码
static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size) { struct sock_iocb *si = kiocb_to_siocb(iocb); int err;
si->sock = sock; si->scm = NULL; si->msg = msg; si->size = size;
err = security_socket_sendmsg(sock, msg, size); if (err) return err;
return sock->ops->sendmsg(iocb, sock, msg, size); }
|
代码前面对比一下接收的__sock_recvmsg,可以发现基本相同,只是不同的地方是这里调用了UDP的sendmsg来发送数据,我们再次把钩子结构贴出来
static const struct proto_ops unix_dgram_ops = { 。。。。。。 .sendmsg = unix_dgram_sendmsg, 。。。。。。 };
|
可以看到调用了uinx_dgram_sendmsg
static int unix_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock_iocb *siocb = kiocb_to_siocb(kiocb); struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct unix_sock *u = unix_sk(sk); struct sockaddr_un *sunaddr=msg->msg_name; struct sock *other = NULL; int namelen = 0; /* fake GCC */ int err; unsigned hash; struct sk_buff *skb; long timeo; struct scm_cookie tmp_scm;
if (NULL == siocb->scm) siocb->scm = &tmp_scm; err = scm_send(sock, msg, siocb->scm); if (err < 0) return err;
err = -EOPNOTSUPP; if (msg->msg_flags&MSG_OOB) goto out;
if (msg->msg_namelen) { err = unix_mkname(sunaddr, msg->msg_namelen, &hash); if (err < 0) goto out; namelen = err; } else { sunaddr = NULL; err = -ENOTCONN; other = unix_peer_get(sk); if (!other) goto out; }
if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr && (err = unix_autobind(sock)) != 0) goto out;
err = -EMSGSIZE; if (len > sk->sk_sndbuf - 32) goto out;
|
上面代码中除了象接收socket一样做了必要的检查外调用了scm_send函数
static __inline__ int scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm) { struct task_struct *p = current; scm->creds.uid = p->uid; scm->creds.gid = p->gid; scm->creds.pid = task_tgid_vnr(p); scm->fp = NULL; scm->seq = 0; unix_get_peersec_dgram(sock, scm); if (msg->msg_controllen <= 0) return 0; return __scm_send(sock, msg, scm); }
|
这里将进程的信息设置进scm_cookie中的creds身份结构中。
int __scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *p) { struct cmsghdr *cmsg; int err;
for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { err = -EINVAL;
/* Verify that cmsg_len is at least sizeof(struct cmsghdr) */ /* The first check was omitted in <= 2.2.5. The reasoning was that parser checks cmsg_len in any case, so that additional check would be work duplication. But if cmsg_level is not SOL_SOCKET, we do not check for too short ancillary data object at all! Oops. OK, let's add it... */ if (!CMSG_OK(msg, cmsg)) goto error;
if (cmsg->cmsg_level != SOL_SOCKET) continue;
switch (cmsg->cmsg_type) { case SCM_RIGHTS: err=scm_fp_copy(cmsg, &p->fp); if (err<0) goto error; break; case SCM_CREDENTIALS: if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct ucred))) goto error; memcpy(&p->creds, CMSG_DATA(cmsg), sizeof(struct ucred)); err = scm_check_creds(&p->creds); if (err) goto error; break; default: goto error; } }
if (p->fp && !p->fp->count) { kfree(p->fp); p->fp = NULL; } return 0;
error: scm_destroy(p); return err; }
|
我们看到上面的代码与前面一节的
scm_recv是对应的,回到上面的主函数unix_dgram_sendmsg中,我们看到要判断msg->msg_namelen来确定是否提供了目标方的地址,如果有的话就要使用unix_mkname“格式化”地址。如果没有提供地址就说明已经通过connect已经设置了,所以要通过unix_peer_get得到目标地址的sock,并赋值给other指针。接着判断是否要求传送身份信息,但是要求了又没有为指定地址的话就要通过unix_autobind自动生成一个地址。len > sk->sk_sndbuf - 32是因为sk_sndbuf是保存缓存区大小的结构变量,其中要留出32个字节的控制信息。继续往下看
skb = sock_alloc_send_skb(sk, len, msg->msg_flags&MSG_DONTWAIT, &err); if (skb==NULL) goto out;
memcpy(UNIXCREDS(skb), &siocb->scm->creds, sizeof(struct ucred)); if (siocb->scm->fp) unix_attach_fds(siocb->scm, skb); unix_get_secdata(siocb->scm, skb);
skb_reset_transport_header(skb); err = memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len); if (err) goto out_free;
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
|
首先为发送缓冲区准备一个sk_buff,接着将我们上面准备的身份信息拷贝到这个结构中,然后进入unix_attach_fds中
static void unix_attach_fds(struct scm_cookie *scm, struct sk_buff *skb) { int i; for (i=scm->fp->count-1; i>=0; i--) unix_inflight(scm->fp->fp[i]); UNIXCB(skb).fp = scm->fp; skb->destructor = unix_destruct_fds; scm->fp = NULL; }
|
代码中调用了
void unix_inflight(struct file *fp) { struct sock *s = unix_get_socket(fp); if(s) { struct unix_sock *u = unix_sk(s); spin_lock(&unix_gc_lock); if (atomic_inc_return(&u->inflight) == 1) { BUG_ON(!list_empty(&u->link)); list_add_tail(&u->link, &gc_inflight_list); } else { BUG_ON(list_empty(&u->link)); } unix_tot_inflight++; spin_unlock(&unix_gc_lock); } }
|
也就是说如果file是代表着sock的话,就要“记帐”了,以前我们看到在接收信息后要“冲帐”。然后函数调用了memcpy_fromiovec
int memcpy_fromiovec(unsigned char *kdata, struct iovec *iov, int len) { while (len > 0) { if (iov->iov_len) { int copy = min_t(unsigned int, len, iov->iov_len); if (copy_from_user(kdata, iov->iov_base, copy)) return -EFAULT; len -= copy; kdata += copy; iov->iov_base += copy; iov->iov_len -= copy; } iov++; }
return 0; }
|
这是其实就是将我们的数据拷贝到缓冲区中。数据在iovec结构变量指针处,我们看到是以此为地址拷贝到内核空间的,copy是确定要拷贝的数据大小。从msghdr结构中可以看出用户空间的缓冲区可以是分散的,而iovec负责指向这些数据缓冲区,而我们的sk_buff缓冲区只有一个所以这里的大小是所有用户缓冲区的长度和。而这个长度的变化是由skb_put来完成的
unsigned char *skb_put(struct sk_buff *skb, unsigned int len) { unsigned char *tmp = skb_tail_pointer(skb); SKB_LINEAR_ASSERT(skb); skb->tail += len; skb->len += len; if (unlikely(skb->tail > skb->end)) skb_over_panic(skb, len, __builtin_return_address(0)); return tmp; }
|
函数的意思是根据数据的长度调整tail指针和数据长度len结构变量。回到发送函数中,下面是调用了sock_sndtimeo
static inline long sock_sndtimeo(const struct sock *sk, int noblock) { return noblock ? 0 : sk->sk_sndtimeo; }
|
代码很简单,要是不允许阻塞就要返回0了,否则就要返回设定的时间。回到函数往下看,接着要发送了
restart: if (!other) { err = -ECONNRESET; if (sunaddr == NULL) goto out_free;
other = unix_find_other(net, sunaddr, namelen, sk->sk_type, hash, &err); if (other==NULL) goto out_free; }
unix_state_lock(other); err = -EPERM; if (!unix_may_send(sk, other)) goto out_unlock;
if (sock_flag(other, SOCK_DEAD)) { /* * Check with 1003.1g - what should * datagram error */ unix_state_unlock(other); sock_put(other);
err = 0; unix_state_lock(sk); if (unix_peer(sk) == other) { unix_peer(sk)=NULL; unix_state_unlock(sk);
unix_dgram_disconnected(sk, other); sock_put(other); err = -ECONNREFUSED; } else { unix_state_unlock(sk); }
other = NULL; if (err) goto out_free; goto restart; }
|
代码到这里朋友们如果前面一直跟着学习的话,并不难理解这里,如果我们上面已经找到了通过connect建立的sock,那么这时候other就已经指向了目标的sock,但是如果没有指向的话,就说明我们还没有走connect,而通过指定地址设置的目标的sock,所以这里unix_find_other找到目标的sock,此函数我们以前看过了,找到了目标的sock结构后,就要unix_may_send判断一下是否可以发送,以前我们也说过这个函数了。紧接着一个比较长的if判断语句段,首先我们看到是if (sock_flag(other, SOCK_DEAD)) 判断的目标方的sock是否还能够使用,接着我们继续往下看
err = -EPIPE; if (other->sk_shutdown & RCV_SHUTDOWN) goto out_unlock;
if (sk->sk_type != SOCK_SEQPACKET) { err = security_unix_may_send(sk->sk_socket, other->sk_socket); if (err) goto out_unlock; }
if (unix_peer(other) != sk && unix_recvq_full(other)) { if (!timeo) { err = -EAGAIN; goto out_unlock; }
timeo = unix_wait_for_peer(other, timeo);
err = sock_intr_errno(timeo); if (signal_pending(current)) goto out_free;
goto restart; }
skb_queue_tail(&other->sk_receive_queue, skb); unix_state_unlock(other); other->sk_data_ready(other, len); sock_put(other); scm_destroy(siocb->scm); return len;
out_unlock: unix_state_unlock(other); out_free: kfree_skb(skb); out: if (other) sock_put(other); scm_destroy(siocb->scm); return err; }
|
结合以前章节中介绍的这里重点将缓冲区挂入到目标方的sock的sk_receive_queue队列头中,这是通过
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) { unsigned long flags;
spin_lock_irqsave(&list->lock, flags); __skb_queue_tail(list, newsk); spin_unlock_irqrestore(&list->lock, flags); }
|
其余代码很简单了,到这里我们对UDP的socket数据的发送分析完了,因为UDP的数据发送和接收较TCP的简单,所以我们先介绍了,下一节我们对TCP的数据发送和接收分析一下。
阅读(4875) | 评论(1) | 转发(0) |