分类:
2010-06-27 04:38:58
举个例子,比如有些平台访问内存地址都从偶数地址开始,对于一个int型(假设32位系统),如果从偶数地址开始的地方存放,这样一个读周期就可以读出这个int数据,但是如果从奇数地址开始的地址存放,就需要两个读周期,并对两次读出的结果的高低字节进行拼凑才能得到这个int数据,这样明显降低了读取的效率。
(3)如何进行字节对齐
每个成员按其类型的对齐参数(通常是这个类型的大小)和指定对齐参数(不指定则取默认值)中较小的一个对齐,并且结构的长度必须为所用过的所有对齐参数的整数倍,不够就补空字节。
1. 数据类型的自身对齐值为:对于char型数据,其自身对齐值为1,对于short型为2,对于int, long, float类型,其自身对齐值为4,对于 double 类型其自身对齐值为8,单位为字节。
2.结构体自身对齐值:其成员中自身对齐值最大的那个值。
其中指定对齐值获得方式如下:
#pragma pack (value)时的指定对齐值value。
未指定则取默认值。
字节对齐的细节和编译器实现相关,但一般而言,满足三个准则:
1) 结构体变量的首地址能够被其最宽基本类型成员的大小所整除;
2) 结构体每个成员相对于结构体首地址的偏移量(offset)都是成员大小的整数倍,如有需要编译器会在成员之间加上填充字节(internal adding);
3) 结构体的总大小为结构体最宽基本类型成员大小的整数倍,如有需要编译器会在最末一个成员之后加上填充字节(trailing padding)。
对于上面的准则,有几点需要说明:
1) 前面不是说结构体成员的地址是其大小的整数倍,怎么又说到偏移量了呢因为有了第1点存在,所以我们就可以只考虑成员的偏移量,这样思考起来简单。想想为什么。
结构体某个成员相对于结构体首地址的偏移量可以通过宏offsetof()来获得,这个宏也在stddef.h中定义,如下:
#define offsetof(s,m) (size_t)&(((s *)0)->m)
例如,想要获得S2中c的偏移量,方法为
size_t pos = offsetof(S2, c);// pos等于4
2) 基本类型是指前面提到的像char、short、int、float、double这样的内置数据类型,这里所说的“数据宽度”就是指其sizeof的大小。由于结构体的成员可以是复合类型,比如另外一个结构体,所以在寻找最宽基本类型成员时,应当包括复合类型成员的子成员,而不是把复合成员看成是一个整体。但在确定复合类型成员的偏移位置时则是将复合类型作为整体看待。
以VC6为例:
struct S3
{
char c1;
S1 s;
char c2;
};
S1的最宽简单成员的类型为int,S3在考虑最宽简单类型成员时是将S1“打散”看的,所以S3的最宽简单类型为int,这样,通过S3定义的变量,其存储空间首地址需要被4整除,整个sizeof(S3)的值也应该被4整除。
c1的偏移量为0,s的偏移量呢这时s是一个整体,它作为结构体变量也满足前面三个准则,所以其大小为8,偏移量为4,c1与s之间便需要3个填充字节,而c2与s之间就不需要了,所以c2的偏移量为12,算上c2的大小为13,13是不能被4整除的,这样末尾还得补上3个填充字节。最后得到sizeof(S3)的值为16。
通过上面的叙述,我们可以得到一个公式:
结构体的大小等于最后一个成员的偏移量加上其大小再加上末尾的填充字节数目,即:
sizeof( struct ) = offsetof( last item ) + sizeof( last item ) + sizeof( trailing padding )
到这里,朋友们应该对结构体的sizeof有了一个全新的认识,但不要高兴得太早,有一个影响sizeof的重要参量还未被提及,那便是编译器的pack指令。它是用来调整结构体对齐方式的,不同编译器名称和用法略有不同,VC6中通过#pragma pack实现,也可以直接修改/Zp编译开关。#pragma pack的基本用法为:#pragma pack( n ),n为字节对齐数,其取值为1、2、4、8、16,默认是8,如果这个值比结构体成员的sizeof值小,那么
该成员的偏移量应该以此值为准,即是说,结构体成员的偏移量应该取二者的最小值,
公式如下:
offsetof( item ) = min( n, sizeof( item ) )
再看示例:
#pragma pack(push) // 将当前pack设置压栈保存
#pragma pack(2) // 必须在结构体定义之前使用
struct S1
{
char c;
int i;
};
struct S3
{
char c1;
S1 s;
char c2;
};
#pragma pack(pop) // 恢复先前的pack设置
计算sizeof(S1)时,min(2, sizeof(i))的值为2,所以i的偏移量为2,加上sizeof(i)等于6,能够被2整除,所以整个S1的大小为6。
同样,对于sizeof(S3),s的偏移量为2,c2的偏移量为8,加上sizeof(c2)等于9,不能被2整除,添加一个填充字节,所以sizeof(S3)等于10。
“空结构体”(不含数据成员)的大小不为0,而是1。试想一个“不占空间”的变量如何被取地址、两个不同的“空结构体”变量又如何得以区分呢于是,“空结构体”变量也得被存储,这样编译器也就只能为其分配一个字节的空间用于占位了。如下:
struct S5 { };
sizeof( S5 ); // 结果为1
有一点要注意
数组成员的类型宽度其实是一个数组元素的类型宽度,例如:
struct eth_addr
{
u8_t addr[6]; 数组成员的类型宽度其实是一个数组元素的类型宽度,这里即为1byte
};
这里的eth_addr的addr[6]即为1byte